Sorption of I and Se onto Green Rusts with Different Interlayer Anions, GR(CO32-) AND GR(Cl-)

  • Min, J.H. (Korea Atomic Energy Research Institute) ;
  • Baik, M.H. (Korea Atomic Energy Research Institute) ;
  • Lee, J.K. (Korea Atomic Energy Research Institute) ;
  • Jeong, J.T. (Korea Atomic Energy Research Institute)
  • Received : 2013.07.05
  • Accepted : 2013.08.08
  • Published : 2013.10.30


Natural green rust (GR) can retard the migration of anions through geological media because it has a Layer Double Hydroxyl (LDH) structure with a positive charge. In this study, the sorption behaviors of anions such as selenite ($Se(IV)O{_3}^{2-}$), selenate ($Se(VI)O{_4}^{2-}$), and iodide ($I^-$) onto green rusts with different structures, i.e., GR($Cl^-$) and GR($CO{_3}^{2-}$), were investigated by conducting batch sorption experiments in an anoxic condition. Experimental results showed that selenite was mostly sorbed onto GR($CO{_3}^{2-}$) and then partly reduced to metal selenium, Se(0). However, little selenate and iodide was sorbed onto GR($CO{_3}^{2-}$) while some iodide was sorbed onto GR($Cl^-$). It is presumed from the experimental results that the major sorption mechanism of $SeO{_3}^{2-}$ and $I^-$ onto green rusts is the anion exchange reaction with the anions existing in the interlayer of the rusts. Green rust, therefore, can play an important role in the retardation of anions migrating through deep geological environments owing to its LDH structure with a high anion exchange capacity.


Supported by : NRF (National Research Foundation of Korea)


  1. H.J. Choi, M. Lee and J.Y. Lee, Nucl. Eng. Design., 241, pp. 3348-3356 (2011)
  2. S.S. Kim, K.S. Chun, K.C. Kang, M.H. Baik, S.H. Kwon and J.W. Choi, J. Ind. Eng. Chem., 13, pp. 959-964 (2007)
  3. S.S. Kim, J.H. Min, J.K. Lee, M.H. Baik, J.W. Choi and H.S. Shin, J. Environ. Radioact., 104, pp. 1-6 (2012)
  4. T. Missana, U. Alonso, T.A.C. Scheinost, N. Granizo and M. Garcia-Gutierrez, Geochim. Cosmochim. Acta, 73, pp. 6205-6217 (2009)
  5. U. Schwertmann and H. Fechter, Clay Miner., 29, pp. 87-92 (1994)
  6. U. Schwertmann and R.M. Cornell, The Iron Oxides in the Laboratory (Preparation and Chracterization), Second, Completely Revised and Extended Edition, WILEY-VCH, Winheim, Germany (2008)
  7. L. Carlson, O. Karnland, V.M. Oversby, A. Rance, N. Smart, M. Snellman, M. Vahanen and L.O. Werme, Phys. Chem. Earth, 32, pp. 334-345 (2007)
  8. P. Refait, S.H. Drissi, J. Pytkiewicz and J.M.R. Genin, Corrosion Sci., 39, pp. 1699-1710 (1998)
  9. B. Kounde, A. Raharinaivo, A.A. Olowe, D. Rezel, P. Bauer and J.M.R. Genin, Hyperfine Interact., 46, pp. 421-428 (1989)
  10. J.M.R. Genin, A.A. Olowe, B. Resiak, M. Confenta, N. Rollet-Benbouzid, S. L'Haridon and D. Prieur, Hyperfine Interact., 93, pp. 1807-1812 (1994)
  11. J.M.R. Genin, A.A. Olowe, N.D. Benbouzid-Rollet, D. Prieur, M. Confente and B. Resiak, Hyperfine Interact., 69, pp. 875-878 (1991)
  12. P.P. Stampfl, Corrosion Sci., 9, pp. 185-187 (1969)
  13. J.M.R. Genin, P. Refait, L. Simon and S.H. Drissi, Hyperfine Interact., 11, pp. 313-318 (1998)
  14. M. Duc, G. Lefevre, M. Fedoroff, J. Jeanjean, J.C. Rocuchaud, F. Monteil-Rivera, J. Dumonceau and S. Milonjic, J. Environ. Radioact., 70, pp. 61-72 (2003)
  15. T. Nagata, K. Fukushi and Y. Takahashi, J. Coll. interf. Sci., 332, pp. 309-316 (2009)
  16. R.M. Cornell and U. Schwertmann, The Iron Oxides (Structure, Properties, Reactions, Occurrences and Uses) Second, Completely Revised and Extended Edition, WILEY-VCH, Winheim, Germany (2003)
  17. P. Refait, A. Gehin, M. Abdelmoula and J.M.R. Genin, Corrosion Sci., 45, pp. 659-676 (2003)
  18. C. Ruby, R. Aissa, A. Gehin, J. Cortot, M. Abdelmoula and J.M.R. Genin, C. R. Geosci., 338, pp. 420-432 (2006)
  19. V. Rives, Layered double hydroxides: Present and future, New York: Noba Science (2001)
  20. B.C. Christiansen, T. Balic-Zunic, K. Dideriksen and S.L.S. Stipp, Environ. Sci. Technol., 32, pp. 3436-3441 (2009)
  21. D.G. Lewis, Adv. Geol. Ecol., 30, pp. 345-372 (1997)
  22. G. Bourrie and F. Trolard, Identification criteria for-fougerite and nature of the interlayered anion, WILEY-VCH, Winheim, Germany (2010)
  23. P. Regait, L. Simon and J.-M.R. Genin, Environ. Sci. Technol., 34, pp. 819-825 (2000)
  24. A.E.P. Schellenger and P. Larese-Casanova, Environ.Sci. Technol., 47, pp. 6254-6262 (2013)
  25. R.M. Taylor, U. Schwertman and H. Fechter, Clay Miner., 20, pp. 147-151 (1985)
  26. P. Refait, M. Benali, Abdelmuoula and J.M.R. Genin, Corrosion Sci., 45, pp. 2435-2449 (2003)
  27. Y. Iida, T. Yamaguchi, T. Tanaka and S. Nakayama, J. Nucl. Sci. Technol., 47, pp. 431-438 (2010)
  28. L. Charlet, A.C. Scheinost, C. Tournassat, J.M. Greneche, A. Gehin, A. Fernandez-Martinez, S. Scoudert, D. Tisserand and J. Brendle, Geochim. Cosmochim. Acta, 71, pp. 5731-5749 (2007)
  29. J. Kessi, M. Ramuz, E. Wehrli, M. Spycher and R. Bachofen, Appl. Environ. Microbiol., 65, pp. 4734-4740 (1999)
  30. S.C.B. Myneni, T.K. Tokunaga and G.E. Brown Jr., Science, 278, pp. 1106-1109 (1997)
  31. T.M. Johnson and T.D. Bullen, Geochim. Cosmochim. Acta, 67, pp. 413-419 (2003)
  32. N. Jordan, C. Lomenech, N. Marmier, E. Giffaut and J.J. Ehrhardt, J. Coll. Interf. Sci., 329, pp. 17-23 (2009)
  33. F. Chen, P.C. Burns and R.C. Ewing, J. Nucl. Mater., 275, pp. 81-94 (1999)
  34. T. Mioduski, C. Guminski and D. Zeng, J. Phys. Chem. Ref. Data, 41, 013104 (2012)