DOI QR코드

DOI QR Code

Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells

결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구

  • Song, Se Young (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Kang, Min Gu (Solar Energy Department, Korea Institute of Energy Research) ;
  • Song, Hee-Eun (Solar Energy Department, Korea Institute of Energy Research) ;
  • Chang, Hyo Sik (Graduate School of Green Energy Technology, Chungnam National University)
  • 송세영 (충남대학교 녹색에너지기술전문대학원 녹색에너지기술학과) ;
  • 강민구 (한국에너지기술연구원 태양에너지연구단) ;
  • 송희은 (한국에너지기술연구원 태양에너지연구단) ;
  • 장효식 (충남대학교 녹색에너지기술전문대학원 녹색에너지기술학과)
  • Received : 2013.09.16
  • Accepted : 2013.09.24
  • Published : 2013.10.01

Abstract

Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

References

  1. S. Dauwe, L. Mittelstadt, A. Metz, and R. Hezel, Prog. Photovolt: Res. Appl., 10, 271 (2002). https://doi.org/10.1002/pip.420
  2. B. Hoex, S. B. Heil, E. Langereis, M. C. Van de Sanden, and W. M. Kessels, Appl. Phys. Lett., 89, 042112 (2006). https://doi.org/10.1063/1.2240736
  3. V. Naumann, M. Otto, R. B. Whrspohn, M. Werner, and C. Hagendorf, Proc, 2nd Int. Conf. Crystalline Silicon Photovolt. Silicon PV, 27, 312 (2012).
  4. H. Goverde, B. Vermang, A. Morato, J. Horzel, G Meneghesso, and J. Poortmans, Proc, 2nd Int. Conf. Crystalline Silicon Photovolt. Silicon PV, 27, 355 (2012).
  5. J. L. Van Hemmen, S. B. S. Heil, J. H. Kootwijk, F. Roozeboom, C. J. Hodson, M. C. M. Van de Sanden, and W. M. M. Kessels, J . Elecrtrochem. Soc., 154, 165 (2007).
  6. S. J. Yun, J. W. Lim, and J. H. Lee, Elecrtrochem. Solid-State Lett., 7, C13 (2004). https://doi.org/10.1149/1.1628666
  7. J. W. Lim and S. J. Yun, Elecrtrochem. Solid-State Lett., 7, F45 (2004). https://doi.org/10.1149/1.1756541
  8. G. Dingemans, N. M. Terlinden, M. A. Verheijen, M. C. M. Van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett., 110, 093715 (2011).
  9. G. Dingemans, W. Beyer, M. C. M. Van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett., 97, 152106 (2010). https://doi.org/10.1063/1.3497014
  10. J. J. Park, M. S. Jeong, J. K .Kim, H. D .Lee, M. G. Kang, and H. E. Song, J . KIEEME, 26, 73 (2013).
  11. B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, J . Appl. phys., 104, 044903 (2008). https://doi.org/10.1063/1.2963707
  12. P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, Appl. Phys. Lett., 95, 151502 (2009). https://doi.org/10.1063/1.3250157
  13. B. Hoex, J. J. H. Gielis, M. C. M. Van de Sanden, and W. M. M. Kessels, J . Appl. Phys., 104, 113107 (2008). https://doi.org/10.1063/1.3033516
  14. S. M. Gorge, Chem. Rev., 110, 111 (2010). https://doi.org/10.1021/cr900056b
  15. B. Kafle, S. Kuehnhold, W. Beyer, S. Lindekugel, P. Saint-Cast, M. Hofmann, and J. Rentsch, in 27th EUPVSEC and Exhibition (2012).
  16. G. Dingemans, P. Engelhart, R. Seguin, F. Einsele, B. Hoex, M. C. M Van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett., 106, 114907 (2009).
  17. T. Ludera, T. Lauermann, A. Zuschiag, G. Hahn, and B. Terheiden, Proc. 2nd Int. Conf. Crystalline Silicon Photovolt. Silicon PV, 27, 426 (2012).
  18. B. Vermang, H. Goverde, A. Uruena, A. Lorenz, E. Cornagliotti, A. Rothschild, J. John, J. Poortmans, and R. Mertens, Sol. Energ. Mat. Sol. C., 101, 204 (2012). https://doi.org/10.1016/j.solmat.2012.01.032