DOI QR코드

DOI QR Code

ON ORBIFOLD EMBEDDINGS

  • Cho, Cheol-Hyun ;
  • Hong, Hansol ;
  • Shin, Hyung-Seok
  • Received : 2013.02.22
  • Published : 2013.11.01

Abstract

The concept of "orbifold embedding" is introduced. This is more general than sub-orbifolds. Some properties of orbifold embeddings are studied, and in the case of translation groupoids, orbifold embedding is shown to be equivalent to a strong equivariant immersion.

Keywords

orbifold;groupoid;equivariant immersion

References

  1. V. Ginzburg, V. Guillemin, and Y. Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs 98 American Mathematical Society, Providence, RI, 2002.
  2. A. Adem, J. Leida, and Y. Ruan, Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics, 171. Cambridge University Press, Cambridge, 2007.
  3. W. Chen and Y. Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), no. 1, 1-31. https://doi.org/10.1007/s00220-004-1089-4
  4. A. Haefliger, Groupoides d'holonomie et classifiants, Asterisque 116 (1984), 70-97.
  5. E. Lerman, Orbifolds as stacks?, L'Enseign. Math. (2) 56 (2010), no. 3-4, 315-363. https://doi.org/10.4171/LEM/56-3-4
  6. I. Moerdijk and J. Mrcun, Lie groupoids, sheaves and cohomology, In: Poisson Geometry, Deformation Quantisation and Group Representations. London Math. Soc. Lecture Note Ser. 323, pp. 145-272, Cambridge University Press, Cambridge, 2005.
  7. I. Moerdijk and D. Pronk, Orbifolds, sheaves and groupoids, K-Thoery 12 (1997), no. 1, 3-21. https://doi.org/10.1023/A:1007767628271
  8. D. Pronk and L. Scull, Translation groupoids and orbifold cohomology, Canad. J. Math. 62 (2010), no. 3, 614-645. https://doi.org/10.4153/CJM-2010-024-1

Cited by

  1. On the notions of suborbifold and orbifold embedding vol.15, pp.5, 2015, https://doi.org/10.2140/agt.2015.15.2789

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)