DOI QR코드

DOI QR Code

GENERIC DIFFEOMORPHISMS WITH ROBUSTLY TRANSITIVE SETS

  • Lee, Manseob (Department of Mathematics Mokwon University) ;
  • Lee, Seunghee (Department of Mathematics Chungnam National University)
  • Received : 2012.06.27
  • Published : 2013.07.31

Abstract

Let ${\Lambda}$ be a robustly transitive set of a diffeomorphism $f$ on a closed $C^{\infty}$ manifold. In this paper, we characterize hyperbolicity of ${\Lambda}$ in $C^1$-generic sense.

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. A. Arbieto, Periodic orbits and expansiveness, Math. Z. 269 (2011), no. 3-4, 801-807. https://doi.org/10.1007/s00209-010-0767-5
  2. C. Bonatti and L. J. Diaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. (2) 143 (1996), no. 2, 357-396. https://doi.org/10.2307/2118647
  3. C. Bonatti, L. J. Diaz, and E. R. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitlely many sinks or sources, Ann. of Math. 158 (2003), no. 2, 355-418. https://doi.org/10.4007/annals.2003.158.355
  4. M. Carvalho, Sinai-Ruelle-Bowen measures for N-dimensional derived freom Anosov diffeomorphisms, Ergodic Theory Dynam. Systems 13 (1993), no. 1, 21-44.
  5. L. J. Diaz, Robust nonhyperbolic dynamics and heterodimensional cycles, Ergodic Theory Dynam. Systems 15 (1995), no. 2, 291-315.
  6. L. J. Diaz, E. R. Pujals, and R. Ures, Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999), no. 1, 1-43. https://doi.org/10.1007/BF02392945
  7. S. Hayashi, Diffeomorphisms in $F^1$(M) satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 233-253.
  8. R. Mane, Contributions to the stability conjecture, Topology 17 (1978), no. 4, 383-396. https://doi.org/10.1016/0040-9383(78)90005-8
  9. R. Mane, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. https://doi.org/10.2307/2007021
  10. K. Sakai, N. Sumi, and K. Yamamoto, Diffeomorphisms satisfying the specification property, Proc. Amer. Math. Soc. 138 (2010), no. 1, 315-321. https://doi.org/10.1090/S0002-9939-09-10085-0
  11. M. Shub, Topologically transitive diffeomorphism of $\mathbb{T}^4$, in Symposium on Differential equations and Dyanmical Systems (University of Warwick, 1968/69), pp. 39-40, Lecture Notes in Math., 206. Springer-Verlag, Berlin-New York, 1971.
  12. R. F. Williams, The "DA" maps of Smale and structural stability, in Global Analysis( Berkeley, CA, 1968), pp 329-334, Proc. Sympos. Pure Math., 124. Amer. Math. Soc., Providence, RI, 1970.
  13. D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4, 729-733. https://doi.org/10.1088/0951-7715/22/4/002

Cited by

  1. The ergodic shadowing property from the robust and generic view point vol.2014, pp.1, 2014, https://doi.org/10.1186/1687-1847-2014-170
  2. Orbital Shadowing for -Generic Volume-Preserving Diffeomorphisms vol.2013, 2013, https://doi.org/10.1155/2013/693032
  3. The barycenter property for robust and generic diffeomorphisms vol.32, pp.8, 2016, https://doi.org/10.1007/s10114-016-5123-1