Communications of the Korean Mathematical Society (대한수학회논문집)
- Volume 28 Issue 3
- /
- Pages.487-500
- /
- 2013
- /
- 1225-1763(pISSN)
- /
- 2234-3024(eISSN)
DOI QR Code
CONTINUITY OF APPROXIMATE POINT SPECTRUM ON THE ALGEBRA B(X)
- Sanchez-Perales, Salvador (Universidad Tecnologica de la Mixteca Instituto de Fisica y Matematicas) ;
- Cruz-Barriguete, Victor A. (Universidad Tecnologica de la Mixteca Instituto de Fisica y Matematicas)
- Received : 2012.05.19
- Published : 2013.07.31
Abstract
In this paper we provide a brief introduction to the continuity of approximate point spectrum on the algebra B(X), using basic properties of Fredholm operators and the SVEP condition. Also, we give an example showing that in general it not holds that if the spectrum is continuous an operator T, then for each
File
References
- M. Ahues, A. Largillier, and B. V. Limaye, Spectral Computations for Bounded Operators, Chapman & Hall/CRC, 2001.
- P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Acad., 2004.
- C. Apostol, L. A. Fialkow, D. A. Herrero, and D. Voiculescu, Approximation of Hilbert space operators. Vol. II, Res. Notes Math. 102, Pitman, Boston, 1984.
- L. Burlando, Continuity of spectrum and spectral radius in algebras of operators, Ann. Fac. Sci. Toulouse Math. 9 (1988), no. 1, 5-54. https://doi.org/10.5802/afst.647
- S. R. Caradus, W. E. Pfaffenberger, and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, 1974.
- J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integral Equations Operator Theory 2 (1979), no. 2, 174-198. https://doi.org/10.1007/BF01682733
- J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity. II, Integral Equations Operator Theory 4 (1981), no. 4, 459-503. https://doi.org/10.1007/BF01686497
- S. V. Djordjevic, The continuity of the essential approximative point spectrum, Facta Univ. Ser. Math. Inform. 10 (1995), 97-104.
- S. V. Djordjevic and Y. M. Han, Browder's theorems and spectral continuity, Glasg. Math. J. 42 (2000), no. 3, 479-486. https://doi.org/10.1017/S0017089500030147
- S. V. Djordjevic and Y. M. Han, Operator matrices and spectral continuity, Glasg. Math. J. 43 (2001), no. 3, 487-490.
- B. P. Duggal, I. H. Jeon, and I. H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370 (2010), 584-587. https://doi.org/10.1016/j.jmaa.2010.04.068
- P. R. Halmos and G. Lumer, Square roots of operators. II, Proc. Amer. Math. Soc. 5 (1954), 589-595. https://doi.org/10.1090/S0002-9939-1954-0062953-5
- R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124. https://doi.org/10.1090/S0002-9947-97-01881-3
- J. D. Newburgh, The variation of Spectra, Duke Math. J. 18 (1951), 165-176. https://doi.org/10.1215/S0012-7094-51-01813-3
- S. Sanchez-Perales and S. V. Djordjevic, Continuity of spectrum and approximate point spectrum on operator matrices, J. Math. Anal. Appl. 378 (2011), no. 1, 289-294. https://doi.org/10.1016/j.jmaa.2011.01.062
Cited by
- WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS An*OPERATO vol.51, pp.5, 2014, https://doi.org/10.4134/JKMS.2014.51.5.1089