A Study on Knit Flare Skirts of Hem for 3D Virtual Clothing System - Focused on the Angle of Flare Skirt -

가상착의 시스템을 통한 니트 플레어스커트의 드레이프 형상에 관한 연구 - 각도에 따른 플레어스커트를 중심으로 -

  • Ki, Hee-Sook (Dept. of Knit Fashion Design, Hanyang Women's University)
  • 기희숙 (한양여자대학교 니트패션디자인과)
  • Received : 2013.03.08
  • Accepted : 2013.05.10
  • Published : 2013.06.30

Abstract

This study investigated the formation of silhouette and hemline shape of knit flare skirts according to the properties of knit material through virtual clothing with a 3D virtual clothing system called i-Designer of Technoa, thus building a database of the property data of knit material to reduce the number of sample making steps repeated and implemented several times in the process of clothes making. The results would help to estimate a silhouette in advance, offer assistance to the development of original knit wear, and explore ways to provide basic data for the development of the knit industry of the nation. The investigator made 12 kinds of experimental clothes to the angles(width of skirt: $90^{\circ}$ and $180^{\circ}$), gauge(7G, 12G, and 15G), and grain directions(wale and bias direction) of experimental clothes for virtual clothing. The dynamic characteristics of knit skirt samples according to each gauge were measured with the KES-FB system. Draper shapes were analyzed with the sectional shape data of hemline based on i-Designer. As for the measurements of the sectional shape of hemline and the formation of silhouette, the number of nodes, the average height of node mountains and valleys, and the hemline width right and left and before and after increased at the angle of $180^{\circ}$ than $90^{\circ}$. As gauges multiplied, the number of nodes, and silhouette angle dropping. When considering grain directions, the number of nodes and silhouette index increased in the wale direction at the angle of $90^{\circ}$ with the number of nodes and silhouette angle increasing in the wale direction at the angle of $180^{\circ}$.

Acknowledgement

Supported by : 한양여자대학교