Densification of Cf/SiC Composite Using PIP with Adding of Cyclohexene

Cyclohexene을 첨가한 PIP 공정 사용 Cf/SiC 복합재의 고밀도화

  • 배진철 (한국세라믹기술원 나노융합지능소재팀) ;
  • 조광연 (한국세라믹기술원 나노융합지능소재팀) ;
  • 김정일 (데크 주식회사) ;
  • 임동원 (데크 주식회사) ;
  • 박종규 (한국국방과학연구소) ;
  • 이만영 (한국국방과학연구소) ;
  • 이재열 (한국국방과학연구소)
  • Received : 2013.07.08
  • Accepted : 2013.10.05
  • Published : 2013.10.31


Carbon fiber-reinforced SiC matrix composites have good oxidation resistance and thermal shock resistance. These properties have allowed the composites to be applied to high-temperature structures. In this study, $C_f/SiC$ composites were fabricated via precursor infiltration and pyrolysis (PIP) process, including liquid phase infiltration and chemical vapor curing using cyclohexene. The final $C_f/SiC$ composites, which have gone through the PIP process five times, showed a density of $1.79g/cm^3$, as compared to a density of $0.43g/cm^3$ for pre-densified bare carbon fiber preform. As for the oxidation resistance characteristics, the weight of $C_f/SiC$ composite was maintained at 81% at $1400^{\circ}C$ in air for 6 hours. Chemical vapor curing (CVC) using cyclohexene has shown to be an effective method to achieve high densification, leading to increased oxidation resistance.

탄소섬유강화 SiC기지상 복합재는 우수한 산화저항성과 우수한 열충격저항성을 가진다. 그리고 이런 특성들은 탄소섬유강화복합재가 고온구조재로서 응용케하였다. 본 연구에서는 $C_f/SiC$ 복합재가 전구체 함침과 액상 함침이 동반된 열분해공정, Cyclohexene을 사용한 화학기상 경화공정을 통해 제조되었다. 최종 제조된 $C_f/SiC$ 복합재는 5회 함침을 통해 $0.43g/cm^3$ 밀도를 갖는 탄소섬유 프리폼에서 $1.76g/cm^3$의 밀도값을 나타내고 있다. 그리고 산화저항성 특성면에서 $C_f/SiC$ 복합재의 무게가 공기중 $1400^{\circ}C$에서 6시간 유지 후에 81%가 남았다. 결과적으로 Cyclohexene을 사용한 화학기상 경화공정은 효과적으로 높은 치밀화와 증가된 산화저항성을 보이고 있다.



  1. Dong, S., Wang, Z., Zhou, H., Kan, Y.M., Zhang, X., Ding, Y., Gao, L., Wu, B., and Hu, J., "Research Progress in SiC-Based Ceramic Matrix Composites", Journal of the Korean Ceramic Society, Vol. 49, No. 4, 2012, pp. 295-300.
  2. Camus, G., Guillaumat, L., and Baste, S., "Development of Damage in a 2D Woven C/SiC Composite under Mechanical Loading: I. Mechanical Characterization", Composites Science and Technology Vol. 56, 1996, pp. 1363-1372.
  3. Colombo, P., Mera, G., Riedel, R., and Soraru, G.D., "Polymer Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics", Journal of the American Ceramic Society, Vol. 93, No. 7, 2010, pp. 1551-2916.
  4. Chen, S., Hu, H., Zhang, Y., He, X., and Mei, M., "Rapid Densification of C/SiC Composites by Joint Processes of CLVD and PIP", Materials Letters, Vol. 65, 2011, pp. 3137-3139.
  5. Ian, A., Davies, J., and Rees D. Rawlings, "Mechanical Properties in Compression of CVI-densified Porous Carbon/carbon Composite", Composites Science and Technology, Vol. 59, 1999, pp. 97-104.
  6. Taguchi, T., Hasegawa, Y., and Shamoto, S., "Effect of Carbon Nanofiber Dispersion of the Properties of PIP-SiC/SiC Composites", Journal of Nuclear Materials, Vol. 417, 2011, pp. 348-352.
  7. Xingui, Z., Yua, Y., Changrui, Z., Boyun, H., and Xueye, L., "Effect of Carbon Fiber Pre-heat-treatment on the Microstructure and Properties of Cf/SiC Composites", Materials Science and Engineering, Vol. 433, 2006, pp. 104-107.
  8. Taki, T., Maeda, S., Okamura, K., Sato, M., and Matsuzawa, T., "Oxidation Curing Mechanism of Polycarbosilane Fibres by Solid-state 29Si high-resolution NMR", Journal of Materials Science Letters, Vol. 6, 1987, pp. 826-828.
  9. Takeda, M., Sakamoto, J., Imai, Y., and Ichikawa, H., "Thermal Stability of the Low-oxygen-content Silicon Carbide Fiber, Hi- NicalonTM, Composites", Science and Technology, Vol. 59, 1999, pp. 813-819.
  10. Mao, X.H., Song, Y.C., Li, W., and Yang, D.X., "Mechanism of Curing Process for Polycarbosilane Fiber with Cyclohexene Vapor", Journal of Applied Polymer Science, Vol. 105, 2007, pp. 1651-1657.

Cited by

  1. Evaluation System for Ablative Material in a High-Temperature Torch vol.20, pp.3, 2013,