DOI QR코드

DOI QR Code

Development and Application of an Storm Identification Algorithm that Conceptualizes Storms by Elliptical Shape

타원체로 모형화된 폭풍우 판별 알고리즘의 개발 및 적용

  • Cho, Huidae (Staff Water Resources Engineer, Dewberry) ;
  • Kim, Dongkyun (Department of Civil Engineering, Hongik University) ;
  • Lee, Kanghee (Department of Civil Engineering, Hongik University) ;
  • Lee, Jinsu (Department of Civil Engineering, Hongik University) ;
  • Lee, Dongryul (Department of Water Resources Engineering, Korea Institute of Construction Technology)
  • 조희대 (미 듀베리 사 수자원부) ;
  • 김동균 (홍익대학교 토목공학과) ;
  • 이강희 (홍익대학교 토목공학과) ;
  • 이진수 (홍익대학교 토목공학과) ;
  • 이동률 (건설기술연구원 수자원연구실)
  • Received : 2013.08.08
  • Accepted : 2013.09.02
  • Published : 2013.10.31

Abstract

A storm identification algorithm conceptualizing the storm with an elliptical shape was developed. The developed algorithm identifies the center, major and minor axis, and the inclination angle of the ellipse that contains the maximum volume of rainfall for a given area using the isolated particle swarm optimization algorithm. The developed algorithm was applied to radar precipitation imagery of 10 major storms observed in Korea during the year 2008 and 2012. The algorithm successfully identified the storm shapes for all time steps of all 10 major storms. The following conclusion was drawn from the result of the storm identification: (1) as the size of the ellipse becomes smaller, the diversity of the storm shape increased, and the diversity decreased as the size of the ellipse increases; (2) the temporal variation of the storm center identified by the ellipse is not always continuous; (3) the tracking capability of the algorithm is expected to be improved as the center and the shape of the ellipse at the previous time step is considered in the objective function of the optimization algorithm.

Acknowledgement

Grant : 수문레이더 기반 홍수예경보 및 폭설 추정 플랫폼 개발

Supported by : 한국건설기술연구원

References

  1. Arnaud, P., Bouvierb. C., Cisnerosc. L., and Dominguezc. R. (2002) Influence of rainfall spatial variability on flood prediction. J. Hydrol., Vol. 260, pp. 216-230. https://doi.org/10.1016/S0022-1694(01)00611-4
  2. Bowler, N.E.H., Pierce, C.E., and Seed, A. (2004) Development of a precipitation nowcasting algorithm based upon optical flow techniques. J. Hydrol., Vol. 288(1-2), pp. 74-91. https://doi.org/10.1016/j.jhydrol.2003.11.011
  3. Bremaud, P.J. and Pointin, Y.B. (1993) Forecasting heavy rainfall from rain cell motion using radar data. J. Hydrol., Vol. 288(1-2), pp. 74-91.
  4. Cho, H. and Olivera, F. (2009) Effect of the Spatial Variability of Land Use, Soil Type, and Precipitation on Streamflows in Small Watersheds. J. American Water Res. Ass., Vol. 45, No. 3, pp. 673-686. https://doi.org/10.1111/j.1752-1688.2009.00315.x
  5. Cho, H., Kim. D., Olivera. F., and Guikemab. S.D. (2011) Enhanced Speciation in Particle Swarm Optimization for Multi-Modal Problems. European. J. Operational. Res., Vol. 213, No. 1, pp. 15-23. https://doi.org/10.1016/j.ejor.2011.02.026
  6. Cho, H. and Olivera, F. (2012) Application of Multi-Modal Optimi­zation for Uncertainty Estimation of Computationally Expen­sive Hydrologic Models. J. Water Res. Plng. and Mgmt., pp. 1943-5452.
  7. Choi, J., Olivera, F., and Socolofsky, S. (2009) Storm Identification and Tracking Algorithm for Modeling of Rainfall Fields Using 1-h NEXRAD Rainfall Data in Texas. J. Hydrol. Eng., Vol. 14, pp. 721-730. https://doi.org/10.1061/(ASCE)1084-0699(2009)14:7(721)
  8. Crane, R.K. (1979) Automatic cell detection and tracking. IEEE Trans. Geosci. Electron., Vol. 17, No. 4, pp. 250-262. https://doi.org/10.1109/TGE.1979.294654
  9. Dell'Acqua, F. and Gamba, P. (2002) Rain Pattern tracking by means of COTREC and modal matching. Opt. Eng. Bellingham, Vol. 41(2), pp. 278-286. https://doi.org/10.1117/1.1432668
  10. Dixon, M., and Wiener, G. (1993) TITAN Thunderstorm identifica­tion, tracking, analsis, and nowcasting-A radar-based methodol­ogy. J. Atmos. Ocean. Technol., Vol. 10, No. 6, pp. 785-797. https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
  11. Einfalt, T., Denoeux, T., and Jacquet, G. (1990) A radar rainfall fore­casting method designed for hydrological purposes. J. Hydrol., Vol. 114(3-4), pp. 229-244. https://doi.org/10.1016/0022-1694(90)90058-6
  12. Kim, D., Olivera. F., and Cho, H. (2013a) Effect of the Inter-Annual Variability of Rainfall Statistics on Stochastically Generated Rainfall Time Series: Part 1. Impact on Peak and Extreme Rain­fall Values. Stoch. Environ. Res. and Risk. Assess., Vol. 27, pp. 1601-1610. https://doi.org/10.1007/s00477-013-0696-z
  13. Kim, D., Olivera. F., Cho, H., and Lee. S. (2013b) Effect of the Inter-Annual Variability of Rainfall Statistics on Stochastically Generated Rainfall Time Series: Part 2. Impact on Watershed Response Variables. Stoch. Environ. Res. and Risk. Assess., Vol. 27, pp. 1611-1619. https://doi.org/10.1007/s00477-013-0697-y
  14. Grecu, M., and Krajewski, W.F. (2000) A large sample investiga­tion of statistical procedures for radar-based short-term quantita­tive precipitation forecasting. J. Hydrol., Vol. 239(1-4), pp. 69­84.
  15. Handwerker, J. (2002) Cell tracking with TRACE 3D - A new algo­rithm. Atoms. Res., Vol. 61, No. 1, pp. 15-34. https://doi.org/10.1016/S0169-8095(01)00100-4
  16. Johnson, J.T., Pamela L.M., Witt. A., De Wayne Mitchell. E., Stumpf. G.J., Eilts. M.D. and Kevin W. Thomas. (1998) The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wheather Forecast., Vol. 13, No. 2, pp. 263-276. https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
  17. Lakshmanan, V., Rabin, R., and Chandrasekar, V. (2003) Multiscale storm identification and forecast. Atoms. Res., No. 67-68, pp. 367-380. https://doi.org/10.1016/S0169-8095(03)00068-1
  18. Li, L., Schmid, W., and Joss, J. (1995) Nowcasting of motion and growth of precipitaion with radar over a complex orography. J. Appl. Meteorol., Vol. 34, No. 6, pp. 1286-1300. https://doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2
  19. Mecklenburg, S., Joss, J., and Schmid, W. (2000) Improving the nowcasting of precipitation in an Alpine region with an enhanced radar echo tracking algorithm. J. Hydrol., Vol., Vol. 239, pp. 46-68. https://doi.org/10.1016/S0022-1694(00)00352-8
  20. Mellor, D., Sheffield. J, O'Connell. P. E., and Metcalfe. A. V. (2000) A stochastic space-time flow forecasting I: Development of MTB conditional rainfall scenario generator. Hydology and Earth Syst. Sci., Vol. 4, No. 4, pp. 603-615. https://doi.org/10.5194/hess-4-603-2000
  21. Northrop, P. (1997) A clustered spatial-temporal model of rainfall. Proc. Roy. Soc. London A454, pp. 1875-1888.
  22. Ogden, F.L. and Senarath, S.U.S. (1997) Continuous, Distributed-Parameter Hydrologic Modeling with CASC2D, in : Proc. Inter­national Association of Hydraulic Research, San Francisco, CA, Theme A, pp. 864-869.
  23. Ogden, F.L., Sharifa. H.O., Senaratha. S.U.S., Smithb. J.A., Baeckb. M.L., and Richardsonc. J.R. (2000) Hydrologic analysis of the Fort Collins, Colorado, flash flood of 1997. J. Hydrol., Vol. 228(1-2), pp. 82-100. https://doi.org/10.1016/S0022-1694(00)00146-3
  24. Olivera, F., Choi, J., Kim. D, and Lee. M. (2008) Estimation of aver­age rainfall areal reducion factors I Texas using NEXRAD data. J. Hydol. Eng., Vol. 13, No. 6, pp. 438-448. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(438)
  25. R Development Core Team. (2006) R: A Language and Environ­ment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  26. Rinehart, R.E., and Garvey, E.T. (1978) Three-dimensional storm motion detection by conventional weather radar. Nature, Lon­don. Vol. 273, pp. 287-289. https://doi.org/10.1038/273287a0
  27. Segond, M,L., Wheater. H.S., and Onof. C. (2007) The significance of spatial rainfall representation for flood runoff estimation: A numberical evaluation based on the Lee catchment, UK. J. Hydrol., Vol. 347, pp. 116-131. https://doi.org/10.1016/j.jhydrol.2007.09.040
  28. Seo, Y., and Schmidt, A.R. (2013) Network configuration and hydrograph sensitivity to storm kinematics. Water Resources Research., Vol. 49, pp. 1812-1827. https://doi.org/10.1002/wrcr.20115
  29. Singh V.P. (1997) Effect of spatial and temporal variability in rain­fall and watershed characteristics on streamflow hydrograph. J. Hydrol. Processes., Vol. 11, pp. 1649-1669. https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1649::AID-HYP495>3.0.CO;2-1
  30. Singh, V.P. (1998) Effect of the direction of storm movement on pla­nar flow, J. Hydrol. Processes., Vol. 12, No. 1, pp. 147-170. https://doi.org/10.1002/(SICI)1099-1085(199801)12:1<147::AID-HYP568>3.0.CO;2-K
  31. Singh, V.P. (2002a) Effect of the duration and direction of storm movement on infiltrating planar flow with full areal coverage, J. Hydrol. Processes., Vol. 16, No. 7, pp. 1479-1511. https://doi.org/10.1002/hyp.358
  32. Singh, V. P. (2002b) Effect of the duration and direction of storm movement on planar flow with full and partial areal coverage, J. Hydrol. Processes., Vol. 16, No. 17, pp. 3437-3466. https://doi.org/10.1002/hyp.1109
  33. Smith, M.B., Korena. V.I., Zhanga Z., Reeda. S.M., Panb. J.J., and Moreda. F. (2004) Runoff response to spatial variability in pre­cipitation: an analysis of observed data. J. Hydrol., Vol. 298, pp. 267-286. https://doi.org/10.1016/j.jhydrol.2004.03.039
  34. Steinacker, R., Dorninger. M., Wolfelmaier. F., and Krennert. T. (2000) Automatic tracking of convective cells and cell com­plexes from lighting and radar data. Meteorol. Atmos. Phys., Vol. 72(2-4), pp. 101-110. https://doi.org/10.1007/s007030050009
  35. Upton, G.J.G. (2000) Using volumetric radar data to track horizontal and vertical movements of storms. Phys. Chem. Earth, Part B, Vol. 25(10-12), pp. 1117-1121. https://doi.org/10.1016/S1464-1909(00)00163-5
  36. Wheater, H.S., Isham. V.S., Cox. D.R., Chandler. R.E., Kakou. A., Northrop. P.J., Oh. L., Onof. C., and Rodriguez-Iturbe. I. (2000) Spatial-temporal rainfall fields: Modelling and statistical aspects. Hydrology Earth Syst. Sci., Vol. 4, No. 4, pp. 581-601. https://doi.org/10.5194/hess-4-581-2000
  37. Zawadzki, I.I. (1973) Statistical properties of precipitation patterns. J. Appl. Meteorol., Vol. 12, No. 3, pp. 459-472. https://doi.org/10.1175/1520-0450(1973)012<0459:SPOPP>2.0.CO;2

Cited by

  1. Efficient Uncertainty Analysis of TOPMODEL Using Particle Swarm Optimization vol.47, pp.3, 2014, https://doi.org/10.3741/JKWRA.2014.47.3.285