DOI QR코드

DOI QR Code

Historical Introduction of Japanese Wild Mice, Mus musculus, from South China and the Korean Peninsula

  • Nunome, Mitsuo (Laboratory of Ecology and Genetics, Graduate School of Environmental Earth Science, Hokkaido University) ;
  • Suzuki, Hitoshi (Laboratory of Ecology and Genetics, Graduate School of Environmental Earth Science, Hokkaido University) ;
  • Moriwaki, Kazuo (RIKEN, Bioresource Center)
  • Received : 2013.04.09
  • Accepted : 2013.08.31
  • Published : 2013.10.31

Abstract

In Japan, the wild house mouse Mus musculus consists of two lineages, one from Southeast Asia (Mus musculus castaneus; CAS) and one from northern Eurasia (Mus musculus musculus; MUS). However, the exact origins of the parental lineages are unclear. A recent work using mitochondrial sequences revealed that Japanese CAS and MUS are closely related to haplotypes from South China and the Korean Peninsula, respectively. Recent phylogeographic analyses using nuclear gene sequences have also confirmed a close relationship between Japan and Korea in the MUS component. However, the Japanese CAS components in the nuclear genome are likely to be unique and to differ from those of other CAS territories, including South China. Although the origins are still unresolved, these results allow us to conclude that two areas of the continent, South China and the Korean Peninsula, are the primary source areas of Japanese wild mice and suggest pre-historical introductions associated with certain historical agricultural developments in East Asia.

References

  1. Auffray JC, Vanlerberghe F, Britton-Davidian J, 1990. The house mouse progression in Eurasia: a palaeontological and archaeozoological approach. Biological Journal of the Linnean Society, 41:13-25. https://doi.org/10.1111/j.1095-8312.1990.tb00818.x
  2. Bonhomme F, Searle JB, 2012. House mouse phylogeography. In: Evolution of the house mouse, Cambridge series in morphology and molecules (Eds., Macholan M, Baird SJE, Munclinger P, Pialek J). Cambridge University Press, Cambridge, pp. 278-296.
  3. Cucchi T, Vigne JD, 2006. Origin and diffusion of the house mouse in the Mediterranean. Human Evolution, 21:95-106. https://doi.org/10.1007/s11598-006-9011-z
  4. Fuller DQ, Sato YI, Castillo C, Qin L, Weisskopf AR, Kingwell- Banham EJ, Song J, Ahn SM, van Etten J, 2010. Consilience of genetics and archaeobotany in the entangled history of rice. Archaeological and Anthropological Sciences, 2:115-131. https://doi.org/10.1007/s12520-010-0035-y
  5. Fuller DQ, van Etten J, Manning K, Castillo C, Kingwell-Banham E, Weisskopf A, Qin L, Sato YI, Hijmans RJ, 2011. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. The Holocene, 21:743-759. https://doi.org/10.1177/0959683611398052
  6. Hammer MF, Karafet TM, Park H, Omoto K, Harihara S, Stoneking M, Horai S, 2006. Dual origins of the Japanese: common ground for hunter-gatherer and farmer Y chromosomes. Journal of Human Genetics, 51:47-58. https://doi.org/10.1007/s10038-005-0322-0
  7. Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B, 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature, 490:497-501. https://doi.org/10.1038/nature11532
  8. Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ, 2004. Comparative recombination rates in the rat, mouse, and human genomes. Genome Research, 14:528-538. https://doi.org/10.1101/gr.1970304
  9. Khush GS, 1997. Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology, 35:25-34. https://doi.org/10.1023/A:1005810616885
  10. Liu L, Lee GA, Jiang L, Zhang J, 2007. Evidence for the early beginning (c. 9000 cal. BP) of rice domestication in China: a response. The Holocene, 17:1059-1068. https://doi.org/10.1177/0959683607085121
  11. Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA, 2006. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proceedings of the National Academy of Sciences of the United States of America, 103:9578-9583. https://doi.org/10.1073/pnas.0603152103
  12. Molina J, Sikora M, Garud N, Flowers JM, Rubinsteina S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan MD, 2011. Molecular evidence for a single evolutionary origin of domesticated rice. Proceedings of the National Academy of Sciences of the United States of America, 108:8351-8356. https://doi.org/10.1073/pnas.1104686108
  13. Nunome M, Ishimori C, Aplin KP, Tsuchiya K, Yonekawa H, Moriwaki K, Suzuki H, 2010. Detection of recombinant haplotypes in wild mice (Mus musculus) provides new insights into the origin of Japanese mice. Molecular Ecology, 19: 2474-2489.
  14. Rajabi-Maham H, Orth A, Siahsarvie R, Boursot P, Darvish J, Bonhomme F, 2012. The south-eastern house mouse Mus musculus castaneus (Rodentia: Muridae) is a polytypic subspecies. Biological Journal of the Linnean Society, 107:295-306. https://doi.org/10.1111/j.1095-8312.2012.01957.x
  15. Suzuki H, Aplin KP, 2012. Phylogeny and biogeography of the genus Mus in Eurasia. In: Evolution of the house mouse (Eds., Macholan M, Baird SJE, Munclinger P, Pialek J). Cambridge University Press, Cambridge, pp. 35-64.
  16. Suzuki H, Miyashita N, Moriwaki K, Kominami R, Muramatsu M, Kanehisa T, Bonhomme F, Petras ML, Yu ZC, Lu DY, 1986. Evolutionary implication of heterogeneity of the nontranscribed spacer region of ribosomal DNA repeating units in various subspecies of Mus musculus. Molecular Biology and Evolution, 3:126-137.
  17. Suzuki H, Nunome M, Kinoshita G, Aplin KP, Vogel P, Kryukov AP, Jin ML, Han SH, Maryanto I, Tsuchiya K, Ikeda H, Shiroishi T, Yonekawa H, Moriwaki K, 2013. Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA. Heredity, advance online publication. http:// dx.doi.org/10.1038/hdy.2013.60. https://doi.org/10.1038/hdy.2013.60
  18. Tanaka M, Cabrera VM, Gonzalez AM, Larruga JM, Takeyasu T, Fuku N, Guo LJ, Hirose R, Fujita Y, Kurata M, Shinoda K, Umetsu K, Yamada Y, Oshida Y, Sato Y, Hattori N, Mizuno Y, Arai Y, Hirose N, Ohta S, Ogawa O, Tanaka Y, Kawamori R, Shamoto-Nagai M, Maruyama W, Shimokata H, Suzuki R, Shimodaira H, 2004. Mitochondrial genome variation in Eastern Asia and the peopling of Japan. Genome Research, 14:1832-1850. https://doi.org/10.1101/gr.2286304
  19. Yonekawa H, Moriwaki K, Gotoh O, Miyashita N, Matsushima N, Shi LM, Cho WS, Zhen XL, Tagashira Y, 1988. Hybrid origin of Japanese mice "Mus musculus molossinus": evidence from restriction analysis of mitochondrial DNA. Molecular Biology and Evolution, 5:63-78.
  20. Yonekawa H, Sato JJ, Suzuki H, Moriwaki K, 2012. Origin and genetic status of Mus musculus molossinus: a typical example for reticulate evolution in the genus Mus. In: Evolution of the house mouse (Eds., Macholan M, Baird SJE, Munclinger P, Pialek J). Cambridge University Press, Cambridge, pp. 94-113.

Cited by

  1. Tracing the eastward dispersal of the house mouse, Mus musculus vol.37, pp.1, 2015, https://doi.org/10.1186/s41021-015-0013-9
  2. (Rodentia, Muridae), Inferred from Mitochondrial Haplotypes and External Body Characteristics vol.35, pp.3, 2018, https://doi.org/10.2108/zs170184