Changes of Microbial Population in the Rumen of Dairy Steers as Influenced by Plant Containing Tannins and Saponins and Roughage to Concentrate Ratio

  • Anantasook, N. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Wanapat, M. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Cherdthong, A. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Gunun, P. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
  • Received : 2013.04.02
  • Accepted : 2013.06.14
  • Published : 2013.11.01


The objective of this study was to investigate microbial population in the rumen of dairy steers as influenced by supplementing with dietary condensed tannins and saponins and different roughage to concentrate ratios. Four, rumen fistulated dairy steers (Bos indicus) were used in a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. The main factors were two roughage to concentrate ratios (R:C, 60:40 and 40:60) and two supplementations of rain tree pod meal (RPM) (0 and 60 g/kg of total DM intake). Chopped 30 g/kg urea treated rice straw was used as a roughage source. All animals received feed according to respective R:C ratios at 25 g/kg body weight. The RPM contained crude tannins and saponins at 84 and 143 g/kg of DM, respectively. It was found that ruminal pH decreased while ruminal temperature increased by a higher concentrate ratio (R:C 40:60) (p<0.05). In contrast, total bacterial, Ruminococus albus and viable proteolytic bacteria were not affected by dietary supplementation. Numbers of fungi, cellulolytic bacteria, Fibrobactor succinogenes and Ruminococus flavefaciens were higher while amylolytic bacteria was lower when steers were fed at 400 g/kg of concentrate. The population of Fibrobactor succinogenes, was found to be higher with RPM supplementation. In addition, the use of real-time PCR technique indicated that the population of protozoa and methanogens were decreased (p<0.05) with supplementation of RPM and with an increasing concentrate ratio. Supplementation of RPM and feeding different concentrate ratios resulted in changing the rumen microbes especially, when the animals were fed at 600 g/kg of concentrate and supplemented with RPM which significantly reduced the protozoa and methanogens population.


  1. Anantasook, N. and M. Wanapat. 2012. Influence of rain tree pod meal supplementation on rice straw based diets using in vitro gas fermentation technique. Asian-Aust. J. Anim. Sci. 25:325-334.
  2. Anantasook, N., M. Wanapat, A. Cherdthong, and P. Gunun. 2013. Effect of plants containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian Australas. J. Anim. Sci. 26:820-826.
  3. Animut, G., A. L. Goetsch, R. Puchala, A. K. Patra, T. Sahlu, V. H. Varel, and J. Wells. 2008. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol. 144:212-227.
  4. Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi, and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522.
  5. Burns, R. E. 1971. Method for estimation of tannin in the grain sorghum. Agron. J. 163:511-512.
  6. Chanthakhoun, V., M. Wanapat, C. Wachirapakorn, and S. Wanapat. 2011. Effect of legume (Phaseolus calcaratus) hay supplementation on rumen microorganisms, fermentation and nutrient digestibility in swamp buffalo. Livest. Sci. 140:17-23.
  7. Chareprasert, S., J. Piapukiew, S. Thienhirun, and J. S. Anthony Whalley. 2006. Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World J. Microbiol. Biotechnol. 22:481-486.
  8. Cherdthong, A., M. Wanapat, P. Kongmun, R. Pilajan, and P. Khejornsart. 2010. Rumen fermentation, Microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 9:1667-1675.
  9. Decandia, M., M. Sitzia, A. Cabiddu, D. Kababya, and G. Molle. 2000. The use of polyethylene glicol to reduce the anti-nutritional effects of tannins in goats fed woody species. Small Rum. Res. 38:157-164.
  10. Denman, S. E., N. Tomkins, and C. S. McSweeney. 2005. Monitoring the effect of bromochloromethane on methanogen populations within the rumen using qPCR. In: 2nd International Symposium on Greenhouse Gases and Animal Agriculture (Ed. C. R. Soliva, J. Takahashi, and M. Kreuzer). P. 112 ETH Zurich, Switzerland.
  11. Flachowsky, G., K. Erdmann, P. Lebzien, and L. Huther. 2006. Investigations on the influence of roughage/concentrate ratio and linseed oil supplementation on rumen fermentation and microbial protein yield in dairy cows. Slovak J. Anim. Sci. 39: 3-9.
  12. Gaafar, H. M. A., A. M. A. Mohi El-Din, M. I. Basiuoni, and K. F. A. El-Riedy. 2009. Effect of concentrate to roughage ratio and baker's yeast supplementation during hot season on performance of lactating buffaloes. Slovak. J. Anim. Sci. 42: 188-195.
  13. Goel, G., H. P. S. Makkar, and K. Becker. 2008. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J. Appl. Microbiol. 105:770-777.
  14. Guo, Y. Q., J. X. Liu, Y. Lu, W. Y. Zhu, S. E. Denman, and C. S. McSweeney. 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen microorganisms. Lett. Appl. Microbiol. 47:421-426.
  15. Hungate, R. E. 1969. The Rumen and Its Microbes. Academic Press. New York.
  16. Jetana, T., S. Usawang, S. Thongruay, C. Vongpipatana, and S. Sophon. 2008. Effects of replacement of leucaena (Leucaena leucocephala) with rain tree pod (Samanea saman) as a protein-rich supplement for cattle production. In: Proceedings of the 46th Kasetsart University Annual Conference, Kasetsart, 29 January - 1 February, 2008. Subject: Animals and veterinary medicine, 2008, pp. 39-45.
  17. Jetana, T., C. Vongpipatana, S. Thongruay, S. Usawang, and S. Sophon. 2010. Apparent digestibility, nitrogen balance, ruminal microbial nitrogen production and blood metabolites in Thai brahman cattle fed a basal diet of rice straw and supplemented with some tropical protein-rich trees. Asian-Aust. J. Anim. Sci. 23:465-474.
  18. Jones, G. A., T. A. McAllister, K. J. Cheng, and A. D. Muir. 1994. Effect of sainfoin (Onobrychis viciifolia Scop) on growth and proteolysis by 4 strains of rumen bacteria: resistance of Prevotella (Bacteroides) ruminicola B14. Appl. Environ. Microbiol. 60:1374-1378.
  19. Kamra, D. N., A. K. Patra, P. N. Chatterjee, K. Ravindra, A. Neeta, and L. C. Chaudhary. 2008. Effect of plant extract on methanogenesis and microbial profile of the rumen of buffalo. A brief overview. Aust. J. Exp. Agric. 48:175-178.
  20. Koike, S. and Y. Kobayashi. 2001. Develop and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobactor succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366.
  21. Kurihara, Y., J. Margaret Eadie, P. N. Hobson, and S. O. Mann. 1968. Relationship between bacteria and ciliate protozoa in the sheep rumen. J. Gen. Microbiol. 51:267-288.
  22. Kwon, J. H., J. Belanger, M. R. Pare, and V. A. Yaylayan. 2003. Application of the microwave-assisted process (MAPTM) to the fast excretion of ginseng saponins. Food Res. Int. 36:491-498.
  23. Kongmun, P., M. Wanapat, P. Pakdee, and C. Navanukraw. 2010. Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest. Sci. 127: 38-44.
  24. Kreuzer, M., D. N. Kamra, and C. R. Soliva. 2009. Utilizing the natural resources of the tropics: plants and plant extracts mitigating methane in ruminants. Proceedings of Animal Nutrition Association World Conference, I. 96-98.
  25. Mackie, R. I., F. M. C. Gilchrist, A. M. Robberts, P. E. Hannah, and H. M. Schwartz. 1978. Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J. Agric. Sci. 90:241-254.
  26. Makkar, H. P. S. 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rum. Res. 49:241-256.
  27. Manasri, N., M. Wanapat, and C. Navanukraw. 2012. Improving rumen fermentation and feed digestibility in cattle by mangosteen peel and garlic pellet supplementation. Livest. Sci. 148:291-295.
  28. Mao, H. L., J. K. Wang, Y. Y. Zhou, and J. X. Liu. 2010. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of Growing lambs. Livst. Sci. 129:56-62.
  29. Norrapoke, T., M. Wanapat, and S. Wanapat. 2012. Effects of protein level and mangosteen peel pellets (Mago-pel) in concentrate diets on rumen fermentation and milk production in lactating dairy crossbreds. Asian-Aust. J. Anim. Sci. 25:971-979.
  30. Patra, A. K. 2007. Nutritional management in organic livestock farming for improved ruminant health and production-An overview. Livest. Res. Rural. Dev. 19(3).
  31. Patra, A. K., D. N. Kamra, and N. Agarwal. 2006. Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol. 128:276-291.
  32. Patra, A. K. and J. Saxena. 2009. A review of the effect and mode of action of saponins on microbial population and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 22: 204-219.
  33. Pilajun, R. and M. Wanapat. 2012. Microbial population in the rumen of swamp buffalo (Bubalus bubalis) as influenced by coconut oil and mangosteen peel supplementation. J. Anim. Physiol. Anim. Nutr. 97:439-445. DOI: 10.1111/j.1439-0396.2012.01279.
  34. Poungchompu, O., M. Wanapat, C. Wachirapakorn, S. Wanapat, and A. Cherdthong. 2009. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 63:389-400.
  35. Ramirez-Restrepo, C. A., T. N. Barry, N. Lopez-Villalobos, N. Kemp, and T. G. Harvey. 2005. Use of Lotus corniculatus containing condensed tannins to increase reproductive efficiency in ewes under commercial dry land farming conditions. Anim. Feed Sci. Technol. 121:23-43.
  36. Russell, J. B. and D. B. Wilson. 1996. Why are ruminal cellulolytic bacteria unable to digest at low pH. J. Dairy Sci. 79:1503-1509.
  37. SAS. 1996. User's guide: Statistic, Version 5. Edition. SAS. Inst, Cary, NC, USA.
  38. Steel, R. G. D. and J. H. Torrie. 1980. Principles and procedures of statistics. McGraw Hill Book Co., New York, NY, USA.
  39. Tavendale, M. H. L., P. Meagher, D. Pacheco, N. Walker, G. T. Attwood, and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123: 403-419.
  40. Van Soest, P. J. 1982. Nutritional ecology of the ruminant. O&B Books Inc, Corvallis.
  41. Van soest, P. J. 1994. Nutritional ecology of the ruminant, (Cornell University Press: London).
  42. Wallace, R. J., N. R. McEwan, F. M. McInotoch, B. Teferedegne, and C. J. Newbold. 2002. Natural products as manipulators of rumen fermentation. Asian-Aust. J. Anim. Sci. 15:1458-1468.
  43. Wanapat, M. and A. Cherdthong. 2009. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffaloes. Curr. Microbiol. 58:294-299.
  44. Wang, C. J., S. P. Wang, and H. Zhou. 2009. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim. Feed Sci. Technol. 148:157-166.
  45. Wina, E., S. Muetzel, E. Hoffmann, H. P. S. Makkar, and K. Becker. 2005. Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim. Feed Sci. Technol. 121:159-174.
  46. Woese, C. R., O. Kandler, and J. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria & Eucarya. Proc. Nat. Acad. Sci. 87:4576-4579.
  47. Wright, A. G., A. J. Williams, B. Winder, C. T. Christophersen, S. L. Rodgers, and K. D. Smith. 2004. Molecular diversity of rumen methanogens from sheep in western Australia. Appl. Environ. Microbiol. 70:1263-1270.
  48. Yu, Z. and M. Morrison. 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 36:808-812.

Cited by

  1. Use of Lysozyme as a Feed Additive on In vitro Rumen Fermentation and Methane Emission vol.29, pp.11, 2016,
  2. rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets pp.13443941, 2017,
  3. Effect of replacing alfalfa hay with a mixture of cassava foliage silage and sweet potato vine silage on ruminal and intestinal digestion in sheep pp.13443941, 2017,
  4. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep1 vol.93, pp.1, 2015,
  5. Short-term effect of Eucalyptus plantations on soil microbial communities and soil-atmosphere methane and nitrous oxide exchange vol.8, pp.1, 2018,
  6. Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources vol.102, pp.5, 2018,