Genome-wide Association Study of Chicken Plumage Pigmentation

  • Park, Mi Na ;
  • Choi, Jin Ae ;
  • Lee, Kyung-Tai ;
  • Lee, Hyun-Jeong ;
  • Choi, Bong-Hwan ;
  • Kim, Heebal ;
  • Kim, Tae-Hun ;
  • Cho, Seoae ;
  • Lee, Taeheon
  • Received : 2013.07.10
  • Accepted : 2013.09.04
  • Published : 2013.11.01


To increase plumage color uniformity and understand the genetic background of Korean chickens, we performed a genome-wide association study of different plumage color in Korean native chickens. We analyzed 60K SNP chips on 279 chickens with GEMMA methods for GWAS and estimated the genetic heritability for plumage color. The estimated heritability suggests that plumage coloration is a polygenic trait. We found new loci associated with feather pigmentation at the genome-wide level and from the results infer that there are additional genetic effect for plumage color. The results will be used for selecting and breeding chicken for plumage color uniformity.


Chicken;Plumage Pigmentation;Genome-wide Association Study


  1. Aulchenko, Y. S., S. Ripke, A. Isaacs, and C. M. van Duijn. 2007. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294-1296.
  2. Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. 57:289-300.
  3. Blum, A., K. Hartmann and A. Rutten. 2010. Braunliche Verfarbung der linken Brustwarze bei einer 60-jahrigen Patientin. Der Hautarzt 61:64-68.
  4. Brawner III, W. R., G. E. Hill, and C. A. Sundermann. 2000. Effects of coccidial and mycoplasmal infections on carotenoid-based plumage pigmentation in male house finches. The Auk 117:952-963.[0952:EOCAMI]2.0.CO;2
  5. Gudbjartsson, D. F., P. Sulem, S. N. Stacey, A. M. Goldstein, T. Rafnar, B. Sigurgeirsson, K. R. Benediktsdottir, K. Thorisdottir, R. Ragnarsson, and S. G. Sveinsdottir. 2008. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat. Genet. 40:886-891.
  6. Gunnarsson, U., A. R. Hellstrom, M. Tixier-Boichard, F. Minvielle, B. Bed'Hom, S. I. Ito, P. Jensen, A. Rattink, A. Vereijken, and L. Andersson. 2007. Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics 175:867-877.
  7. Heo, K.-N., H.-J. Choo, B.- Y. Seo, M.-N. Park, K.-C. Jung, B.-J. Hwang, H.-K. Kim, E.-C. Hong, O.-S. Seo, and B.-S. Kang. 2011. Investigation of TYR and MC1R polymorphism in Korean native chickens and the commercial chickens. CNU J. Agr. Sci. 38:465-471.
  8. Ibarrola-Villava, M., H.-H. Hu, M. Guedj, L. P. Fernandez, V. Descamps, N. Basset-Seguin, M. Bagot, A. Benssussan, P. Saiag, and M. C. Fargnoli. 2012. MC1R, SLC45A2 and TYR genetic variants involved in melanoma susceptibility in Southern European populations: Results from a Meta-analysis. Eur. J. Cancer 48:2183-2191.
  9. Kerje, S., J. Lind, K. Schutz, P. Jensen, and L. Andersson. 2003. Melanocortin 1.receptor (MC1R) mutations are associated with plumage colour in chicken. Anim. Genet. 34:241-248.
  10. Klungland, H. and D. Vage. 2000. Molecular genetics of pigmentation in domestic animals. Curr. Genomics 1:223-242.
  11. Liu, W., S. Chen, J. Zheng, L. Qu, G. Xu, and N. Yang. 2010. Developmental phenotypic-genotypic associations of tyrosinase and melanocortin 1 receptor genes with changing profiles in chicken plumage pigmentation. Poult. Sci. 89:1110-1114.
  12. Park, M.-N., E.-C. Hong, B.-S. Kang, H.-K. Kim, J.-H. Kim, S.-H. Na, H.-S. Chae, O.-S. Seo, J.-Y. Han, J.-H. Jeong, and B.-J. Hwang. 2010. Chemical composition and meat quality of crossbred Korean native chickens (KNC). Korean J. Poult. Sci. 37:415-421.
  13. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. Ferreira, A. D. Bender, J. Maller, P. Sklar, P. I. De Bakker, and M. J. Daly. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575.
  14. Shan, X., Y. Zhang, W. Peng, Z. Wang, and D. Xie. 2009. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J. Exp. Bot. 60:3849-3860.
  15. Shao, P., J.-Y. Liao, D.-G. Guan, J.-H. Yang, L.-L. Zheng, Q. Jing, H. Zhou, and L.-H. Qu. 2012. Drastic expression change of transposon-derived piRNA-like RNAs and microRNAs in early stages of chicken embryos implies a role in gastrulation. RNA Biol. 9:212-227.
  16. Tadano, R., M. Sekino, M. Nishibori, and M. Tsudzuki. 2007. Microsatellite marker analysis for the genetic relationships among Japanese long-tailed chicken breeds. Poult. Sci. 86:460-469.
  17. Tang, X.-F., Z. Zhang, D.-Y. Hu, A.-E. Xu, H.-S. Zhou, L.-D. Sun, M. Gao, T.-W. Gao, X.-H. Gao, and H.-D. Chen. 2012. Association analyses identify three susceptibility loci for vitiligo in the Chinese Han population. J. Invest. Dermatol. 133:403-410.
  18. Tsao, H., L. Chin, L. A. Garraway, and D. E. Fisher. 2012. Melanoma: from mutations to medicine. Genes Dev. 26:1131-1155.
  19. Weston, A. and J. Sommerville. 2006. Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res. 34:3082-3094.
  20. Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher. 2011. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88:76-82.
  21. Zhou, X. and M. Stephens. 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44:821-824.

Cited by

  1. Annotating long intergenic non-coding RNAs under artificial selection during chicken domestication vol.17, pp.1, 2017,
  2. The breeding history and commercial development of the Korean native chicken vol.73, pp.01, 2017,
  3. Whole-Genome Sequencing of African Dogs Provides Insights into Adaptations against Tropical Parasites vol.35, pp.2, 2017,
  4. Genome-wide association study for performance traits in chickens using genotype by sequencing approach vol.7, pp.1, 2017,


Supported by : National Institute of Animal Science