DOI QR코드

DOI QR Code

Fabrication and Characteristic Evaluation of Hybrid Carbon Nanotubes Reinforced SKD11 Cold Work Tool Steel

탄소나노튜브 강화 SKD11 냉간금형용 하이브리드 탄소나노소결체 제조 및 특성 평가

  • Jung, Sung-Sil (Applied Carbon Nanotechnology, CO., LTD.) ;
  • Moon, Je-Se (Applied Carbon Nanotechnology, CO., LTD.) ;
  • Lee, Dae-Yeol (Applied Carbon Nanotechnology, CO., LTD.) ;
  • Youn, Kuk-Tae (Die and Mold Technology Center, Daegu Mechatronics and Materials Institute) ;
  • Park, Chun-Dal (Die and Mold Technology Center, Daegu Mechatronics and Materials Institute) ;
  • Song, Jae-Sun (Die and Mold Technology Center, Daegu Mechatronics and Materials Institute)
  • 정성실 ((주)어플라이드카본나노) ;
  • 문제세 ((주)어플라이드카본나노) ;
  • 이대열 ((주)어플라이드카본나노) ;
  • 윤국태 ((재)대구기계부품연구원 차세대금형기술혁신센터) ;
  • 박춘달 ((재)대구기계부품연구원 차세대금형기술혁신센터) ;
  • 송재선 ((재)대구기계부품연구원 차세대금형기술혁신센터)
  • Received : 2013.08.20
  • Accepted : 2013.08.26
  • Published : 2013.08.28

Abstract

SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. The CNTs was good additives to improve the mechanical properties of metal. In this study, 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. The SKD11+ CNT hybrid nanocomposites were investigated by FE-SEM, particle size distribution, hardness and wear resistance. The CNT was well dispersed in the SKD11 matrix and the mechanical properties of the composite were improved by CNTs addition. It shows good feasibility as cold work die tool.

Acknowledgement

Supported by : 대경지역사업평가원

References

  1. S. Iijima: Nature, 354 (1991) 56. https://doi.org/10.1038/354056a0
  2. M. M. J. Treacy, T. W. Ebbesen and Gibson, J. M.: Nature, 381 (1996) 678. https://doi.org/10.1038/381678a0
  3. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and Treacy, M. M. J.: Phys. Rev., B. 58 (1998) 14013. https://doi.org/10.1103/PhysRevB.58.14013
  4. E. W. Wong, P. E. Sheehan and Lieber, C. M.: Science, 277 (1997) 1971. https://doi.org/10.1126/science.277.5334.1971
  5. O. Lourie and Wagner, H. D.: J. Mater. Res., 13 (1998) 2418. https://doi.org/10.1557/JMR.1998.0336
  6. P. Poncharal, Z. L. Wang, D. Ugarte and de Heer, W. A.: Science, 283 (1999) 1513. https://doi.org/10.1126/science.283.5407.1513
  7. J. P. Salvetat, A. J. Kulik, J.-M. Bonard, G. A. D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N. A. Burnham and Forro, L.: Adv. Mater., 11 (1999) 161. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J
  8. J. P. Salvetat, G. A. D. Briggs, J. M. Bonard and Kulik, A. J.: Phys. Rev. Lett., 82 (1999) 944. https://doi.org/10.1103/PhysRevLett.82.944
  9. M. F. Yu, O. Laurie, M. J. Dyer, K. Moloni, T. F. Kelly and Ruoff, R. S.: Science, 287 (2000) 637. https://doi.org/10.1126/science.287.5453.637
  10. M. F. Yu, B. S. Files, S. Arepalli and Ruoff, R. S.: Phys. Rev. Lett., 84 (2000) 5552. https://doi.org/10.1103/PhysRevLett.84.5552
  11. A. M. K. Esawi and Borady, M. A. E.: Sci. Tech., 68 (2008) 486. https://doi.org/10.1016/j.compscitech.2007.06.030
  12. A. Esawi and Morsi, K.: Composites A, 38 (2007) 646. https://doi.org/10.1016/j.compositesa.2006.04.006
  13. X. H. Chen, W. H. Li, C. S. Chen, L. S. Xu, Z. Yang and Hu, J.: Trans. Nonferrous Met. Soc. China, 15(2) (2005) 314.
  14. K. T. Kim, S. I. Cha, and Hong, S. H.: Mater. Sci. Eng. A, 449 (2007) 46.
  15. K. T. Kim, S. I. Cha, S. H. Hong, and Hong, S. H.: Mater. Sci. Eng. A, 430 (2006) 27. https://doi.org/10.1016/j.msea.2006.04.085
  16. D. M. Hulbert, A. Anders, E. J. Lavernia and Mukherjee, A. K.: Scripta Mater., 60 (2009) 835. https://doi.org/10.1016/j.scriptamat.2008.12.059
  17. Z. A. Munir, U. Anselmi-Tamburini and Ohyanagi, M.: J. Mater. Sci., 41 (2006) 763. https://doi.org/10.1007/s10853-006-6555-2
  18. 이진규, 김택수, 김정곤, 한국분말 야금학회지, 14-3 (2007) 197.

Cited by

  1. Powder Sintering Characteristics of Carbon Nanotubes Reinforced SKD11 Tool Steel Sintered by Spark Plasma Sintering vol.22, pp.3, 2015, https://doi.org/10.4150/KPMI.2015.22.3.157