DOI QR코드

DOI QR Code

Lgr4 Promotes Glioma Cell Proliferation through Activation of Wnt Signaling

  • Yu, Chun-Yong (Department of Neurosurgery, Shengjing Hospital, China Medical University) ;
  • Liang, Guo-Biao (Department of Neurosurgery, Shengyang Northern Hospital) ;
  • Du, Peng (Department of Neurosurgery, Shengjing Hospital, China Medical University) ;
  • Liu, Yun-Hui (Department of Neurosurgery, Shengjing Hospital, China Medical University)
  • Published : 2013.08.30

Abstract

The key signaling networks regulating glioma cell proliferation remain poorly defined. The leucine-rich repeat containing G-protein coupled receptor 4 (Lgr4) has been implicated in intestinal, gastric, and epidermal cell functions. We investigated whether Lgr4 functions in glioma cells and found that Lgr4 expression was significantly increased in glioma tissues. In addition, Lgr4 overexpression promoted while its knockdown using small interfering RNA oligos inhibited glioma cell proliferation. In addition, Wnt/${\beta}$-catenin signaling was activated in cells overexpressing Lgr4. Therefore, our results revealed that Lgr4 activates Wnt/${\beta}$-catenin signaling to regulate glioma cell proliferation.

Keywords

Lgr4;Wnt;${\beta}$-catenin;glioma;cell proliferation

References

  1. Angers S, Moon RT (2009). Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol, 10, 468-77.
  2. Baryawno N, Sveinbjornsson B, Eksborg S, et al (2010). Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res, 70, 266-76. https://doi.org/10.1158/0008-5472.CAN-09-0578
  3. Bondy ML, Scheurer ME, Malmer B, et al (2008). Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer, 8, 1953-68.
  4. Brewer C, Yeager N, Di Cristofano A (2007). Thyroid-stimulating hormone initiated proliferative signals converge in vivo on the mTOR kinase without activating AKT. Cancer Res, 67, 8002-6. https://doi.org/10.1158/0008-5472.CAN-07-2471
  5. Casas-Selves M, Kim J, Zhang Z, et al (2012). Tankyrase and the canonical Wnt pathway protect lung cancer cells from EGFR inhibition. Cancer Res, 72, 4154-64. https://doi.org/10.1158/0008-5472.CAN-11-2848
  6. Chartier NT, Oddou CI, Laine MG, et al (2007). Cyclin-dependent kinase 2/cyclin E complex is involved in p120 catenin (p120ctn)-dependent cell growth control: a new role for p120ctn in cancer. Cancer Res, 67, 9781-90. https://doi.org/10.1158/0008-5472.CAN-07-0233
  7. de Lau W, Barker N, Low TY, et al (2011). Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 476, 293-7. https://doi.org/10.1038/nature10337
  8. Deng J, Miller SA, Wang HY, et al (2002). beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell, 2, 323-34. https://doi.org/10.1016/S1535-6108(02)00154-X
  9. Fodde R, Smits R, Clevers H (2001). APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer, 1, 55-67. https://doi.org/10.1038/35094067
  10. Gao Y, Kitagawa K, Hiramatsu Y, et al (2006). Up-regulation of GPR48 induced by down-regulation of p27Kip1 enhances carcinoma cell invasiveness and metastasis. Cancer Res, 66, 11623-31. https://doi.org/10.1158/0008-5472.CAN-06-2629
  11. Gigineishvili D, Shengelia N, Shalashvili G, et al (2013). Primary brain tumour epidemiology in Georgia: first-year results of a population-based study. J Neurooncol, 8, 241-6.
  12. Glinka A, Dolde C, Kirsch N, et al (2011). LGR4 and LGR5 are R-spondin receptors mediating Wnt/$\beta$-catenin and Wnt/PCP signalling. EMBO Rep, 12, 1055-61. https://doi.org/10.1038/embor.2011.175
  13. Kudo M, Chen T, Nakabayashi K, Hsu SY, Hsueh AJ (2000). The nematode leucine-rich repeat-containing, G protein-coupled receptor (LGR) protein homologous to vertebrate gonadotropin and thyrotropin receptors is constitutively active in mammalian cells. Mol Endocrinol, 14, 272-84. https://doi.org/10.1210/me.14.2.272
  14. Lagerstrom MC, Schioth HB (2008). Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov, 7, 339-57. https://doi.org/10.1038/nrd2518
  15. Lappano R, Maggiolini M (2011). G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov, 10, 47-60. https://doi.org/10.1038/nrd3320
  16. Li XY, Lu Y, Sun HY, et al (2010). G protein-coupled receptor 48 upregulates estrogen receptor alpha expression via cAMP/PKA signaling in the male reproductive tract. Development, 137, 151-7. https://doi.org/10.1242/dev.040659
  17. Loh ED, Broussard SR, Kolakowski LF (2001). Molecular characterization of a novel glycoprotein hormone G-protein-coupled receptor. Biochem Biophys Res Commun, 282, 757-64. https://doi.org/10.1006/bbrc.2001.4625
  18. Luo J, Zhou W, Zhou X, et al (2009). Regulation of bone formation and remodeling by G-protein-coupled receptor 48. Development, 136, 2747-56. https://doi.org/10.1242/dev.033571
  19. Mazerbourg S, Bouley DM, Sudo S, et al (2004). Leucine-rich repeat-containing, G protein-coupled receptor 4 null mice exhibit intrauterine growth retardation associated with embryonic and perinatal lethality. Mol Endocrinol, 18, 2241-54. https://doi.org/10.1210/me.2004-0133
  20. Mohri Y, Kato S, Umezawa A, Okuyama R, Nishimori K (2008). Impaired hair placode formation with reduced expression of hair follicle-related genes in mice lacking Lgr4. Dev Dyn, 237, 2235-42. https://doi.org/10.1002/dvdy.21639
  21. Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet, 5, 691-701. https://doi.org/10.1038/nrg1427
  22. Niehrs C (2012). The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol, 13, 767-79. https://doi.org/10.1038/nrm3470
  23. Angers S, Moon RT (2009). Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol, 10, 468-77.
  24. Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P (2011). PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res, 71, 7463-70. https://doi.org/10.1158/0008-5472.CAN-11-2449
  25. Ostrom QT, Barnholtz-Sloan JS (2011). Current state of our knowledge on brain tumor epidemiology. Curr Neurol Neurosci Rep, 8, 329-35.
  26. Panza A, Pazienza V, Ripoli M, et al (2013). Interplay between SOX9, b-catenin and PPARγ activation in colorectal cancer. Biochim Biophys Acta, 1833, 1853-65. https://doi.org/10.1016/j.bbamcr.2013.04.004
  27. Qian Y, Liu S, Guan Y, et al (2013). Lgr4-mediated Wnt/b-catenin signaling in peritubular myoid cells is essential for spermatogenesis. Development, 140, 1751-61. https://doi.org/10.1242/dev.093641
  28. Sengupta R, Dubuc A, Ward S, et al (2012). CXCR4 activation defines a new subgroup of Sonic hedgehog-driven medulloblastoma. Cancer Res, 72, 122-32. https://doi.org/10.1158/0008-5472.CAN-11-1701
  29. Stevens RC, Cherezov V, Katritch V, et al (2013). The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov, 12, 25-34.
  30. Xie D, Yin D, Tong X, et al (2004). Cyr61 is overexpressed in gliomas and involved in integrin-linked kinase-mediated Akt and beta-catenin-TCF/Lef signaling pathways. Cancer Res, 64, 1987-96. https://doi.org/10.1158/0008-5472.CAN-03-0666
  31. Xing M, Usadel H, Cohen Y, et al (2003). Methylation of the thyroid-stimulating hormone receptor gene in epithelial thyroid tumors: a marker of malignancy and a cause of gene silencing. Cancer Res, 63, 2316-21.
  32. Zurawel RH, Chiappa SA, Allen C, Raffel C (1998). Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res, 58, 896-9.

Cited by

  1. Application of Computed Tomography for Differential Diagnosis of Glioma Stoke and Simple Cerebral Hemorrhage vol.15, pp.8, 2014, https://doi.org/10.7314/APJCP.2014.15.8.3425
  2. Overexpression of Notch1 is associated with the progression of cervical cancer pp.1792-1082, 2015, https://doi.org/10.3892/ol.2015.3143
  3. Impact of mesenchymal stem cells’ secretome on glioblastoma pathophysiology vol.15, pp.1, 2017, https://doi.org/10.1186/s12967-017-1303-8
  4. Wnt/β-catenin signaling cascade: A promising target for glioma therapy pp.00219541, 2018, https://doi.org/10.1002/jcp.27186
  5. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells vol.32, pp.5, 2018, https://doi.org/10.1096/fj.201700897R