DOI QR코드

DOI QR Code

LKB1/AMPK/mTOR Signaling Pathway in Non-small-cell Lung Cancer

  • Han, Dong (Respiratory Diseases Research Center, Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University) ;
  • Li, Shao-Jun (Respiratory Diseases Research Center, Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University) ;
  • Zhu, Yan-Ting (Respiratory Diseases Research Center, Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University) ;
  • Liu, Lu (Respiratory Diseases Research Center, Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University) ;
  • Li, Man-Xiang (Respiratory Diseases Research Center, Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University)
  • Published : 2013.07.30

Abstract

Links between cancer and metabolism have been suggested for a long time but compelling evidence for this hypothesis came from the recent molecular characterization of the LKB1/AMPK signaling pathway as a tumor suppressor axis. Besides the discovery of somatic mutations in the LKB1 gene in certain type of cancers, a critical emerging point was that the LKB1/AMPK axis remains generally functional and could be stimulated by pharmacological molecules such as metformin in cancer cells. In addition, AMPK plays a central role in the control of cell growth, proliferation and autophagy through the regulation of mTOR activity, which is consistently deregulated in cancer cells. Targeting of AMPK/mTOR is thus an attractive strategy in the development of therapeutic agents against non-small-cell lung cancer (NSCLC). In this review, the LKB1/AMPK/mTOR signaling pathway is described, highlighting its protective role, and opportunities for therapeutic intervention, and clinical trials in NSCLC.

Keywords

LKB1;AMPK;mTOR;NSCLC;therapeutic target

References

  1. Chapuis N, Tamburini J, Green AS, et al (2010). Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia, 24, 1686-99. https://doi.org/10.1038/leu.2010.170
  2. Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J (2008). Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A, 105, 17414-9. https://doi.org/10.1073/pnas.0809136105
  3. Don AS, Hogg PJ (2004). Mitochondria as cancer drug targets. Trends Mol Med, 10, 372-8. https://doi.org/10.1016/j.molmed.2004.06.005
  4. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ, 330, 1304-5. https://doi.org/10.1136/bmj.38415.708634.F7
  5. Feldman ME, Apsel B, Uotila A, et al (2009). Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol, 7, e38. https://doi.org/10.1371/journal.pbio.1000038
  6. Guertin DA, Sabatini DM (2007). Defining the role of mTOR in cancer. Cancer Cell, 12, 9-22. https://doi.org/10.1016/j.ccr.2007.05.008
  7. Guertin DA, Stevens DM, Saitoh M, et al (2009). mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell, 15, 148-59. https://doi.org/10.1016/j.ccr.2008.12.017
  8. Gwinn DM, Shackelford DB, Egan DF, et al (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell, 30, 214-26. https://doi.org/10.1016/j.molcel.2008.03.003
  9. Hahn-Windgassen A, Nogueira V, Chen CC, et al (2005). Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem, 280, 32081-9. https://doi.org/10.1074/jbc.M502876200
  10. Han S, Khuri FR, Roman J (2006). Fibronectin stimulates nonsmall cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res, 66, 315-23. https://doi.org/10.1158/0008-5472.CAN-05-2367
  11. Han S, Roman J (2006). Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol Cancer Ther, 5, 430-7. https://doi.org/10.1158/1535-7163.MCT-05-0347
  12. Hardie DG (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol, 8, 774-85. https://doi.org/10.1038/nrm2249
  13. Hardie DG (2011). AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev, 25, 1895-908. https://doi.org/10.1101/gad.17420111
  14. Hawley SA, Boudeau J, Reid JL, et al (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol, 2, 28. https://doi.org/10.1186/1475-4924-2-28
  15. Hemminki A, Markie D, Tomlinson I, et al (1998). A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature, 391, 184-7. https://doi.org/10.1038/34432
  16. Holz MK, Ballif BA, Gygi SP, Blenis J (2005). mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell, 123, 569-80. https://doi.org/10.1016/j.cell.2005.10.024
  17. Horman S, Vertommen D, Heath R, et al (2006). Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem, 281, 5335-40.
  18. Huang J, Manning BD (2008). The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J, 412, 179-90. https://doi.org/10.1042/BJ20080281
  19. Huang X, Wullschleger S, Shpiro N, et al (2008). Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J, 412, 211-21. https://doi.org/10.1042/BJ20080557
  20. Hwang SK, Piao L, Lim HT, et al (2010). Suppression of lung tumorigenesis by leucine zipper/EF hand-containing transmembrane-1. PLoS One, 5.
  21. Inoki K, Zhu T, Guan KL (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115, 577-90. https://doi.org/10.1016/S0092-8674(03)00929-2
  22. Jacinto E, Loewith R, Schmidt A, et al (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol, 6, 1122-8. https://doi.org/10.1038/ncb1183
  23. Jemal A, Bray F, Center M, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
  24. Jemal A, Siegel R, Xu J, Ward E (2010). Cancer statistics, 2010. CA Cancer J Clin, 60, 277-300. https://doi.org/10.3322/caac.20073
  25. Jenne DE, Reimann H, Nezu J, et al (1998). Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet, 18, 38-43. https://doi.org/10.1038/ng0198-38
  26. Ji H, Ramsey MR, Hayes DN, et al (2007). LKB1 modulates lung cancer differentiation and metastasis. Nature, 448, 807-10. https://doi.org/10.1038/nature06030
  27. Jin HO, Hong SE, Woo SH, et al (2012). Silencing of Twist1 sensitizes NSCLC cells to cisplatin via AMPK-activated mTOR inhibition. Cell Death Dis, 3, e319. https://doi.org/10.1038/cddis.2012.63
  28. Jin Q, Feng L, Behrens C, et al (2007). Implication of AMPactivated protein kinase and Akt-regulated survivin in lung cancer chemopreventive activities of deguelin. Cancer Res, 67, 11630-9. https://doi.org/10.1158/0008-5472.CAN-07-2401
  29. Jones RG, Plas DR, Kubek S, et al (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell, 18, 283-93. https://doi.org/10.1016/j.molcel.2005.03.027
  30. Khan N, Afaq F, Khusro FH, et al (2012). Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int J Cancer, 130, 1695-705. https://doi.org/10.1002/ijc.26178
  31. Lee SO, Abdelrahim M, Yoon K, et al (2010). Inactivation of the orphan nuclear receptor TR3/Nur77 inhibits pancreatic cancer cell and tumor growth. Cancer Res, 70, 6824-36. https://doi.org/10.1158/0008-5472.CAN-10-1992
  32. Lee SO, Andey T, Jin UH, et al (2012). The nuclear receptor TR3 regulates mTORC1 signaling in lung cancer cells expressing wild-type p53. Oncogene, 31, 3265-76. https://doi.org/10.1038/onc.2011.504
  33. Liu L, Cash TP, Jones RG, et al (2006). Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell, 21, 521-31. https://doi.org/10.1016/j.molcel.2006.01.010
  34. Mankouri J, Tedbury PR, Gretton S, et al (2010). Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase. Proc Natl Acad Sci U S A, 107, 11549-54. https://doi.org/10.1073/pnas.0912426107
  35. Matsumoto S, Iwakawa R, Takahashi K, et al (2007). Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene, 26, 5911-8. https://doi.org/10.1038/sj.onc.1210418
  36. Memmott RM, Gills JJ, Hollingshead M, et al (2008). Phosphatidylinositol ether lipid analogues induce AMPactivated protein kinase-dependent death in LKB1-mutant non small cell lung cancer cells. Cancer Res, 68, 580-8. https://doi.org/10.1158/0008-5472.CAN-07-3091
  37. Nanjundan M, Byers LA, Carey MS, et al (2010). Proteomic profiling identifies pathways dysregulated in non-small cell lung cancer and an inverse association of AMPK and adhesion pathways with recurrence. J Thorac Oncol, 5, 1894-904. https://doi.org/10.1097/JTO.0b013e3181f2a266
  38. Rauch A, Schellmoser S, Kraus C, et al (2001). First known microdeletion within the Wolf-Hirschhorn syndrome critical region refines genotype-phenotype correlation. Am J Med Genet, 99, 338-42. https://doi.org/10.1002/ajmg.1203
  39. Rothbart SB, Racanelli AC, Moran RG (2010). Pemetrexed indirectly activates the metabolic kinase AMPK in human carcinomas. Cancer Res, 70, 10299-309. https://doi.org/10.1158/0008-5472.CAN-10-1873
  40. Sanchez-Cespedes M, Parrella P, Esteller M, et al (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res, 62, 3659-62.
  41. Sanli T, Liu C, Rashid A, et al (2011). Lovastatin sensitizes lung cancer cells to ionizing radiation: modulation of molecular pathways of radioresistance and tumor suppression. J Thorac Oncol, 6, 439-50. https://doi.org/10.1097/JTO.0b013e3182049d8b
  42. Sanli T, Rashid A, Liu C, et al (2010). Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int J Radiat Oncol Biol Phys, 78, 221-9. https://doi.org/10.1016/j.ijrobp.2010.03.005
  43. Shackelford DB, Shaw RJ (2009). The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer, 9, 563-75. https://doi.org/10.1038/nrc2676
  44. Shackelford DB, Vasquez DS, Corbeil J, et al (2009). mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc Natl Acad Sci U S A, 106, 11137-42. https://doi.org/10.1073/pnas.0900465106
  45. Shao JJ, Zhang AP, Qin W, et al (2012). AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cells. Biochem Biophys Res Commun, 423, 448-53. https://doi.org/10.1016/j.bbrc.2012.05.123
  46. Shaw RJ, Bardeesy N, Manning BD, et al (2004). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 6, 91-9. https://doi.org/10.1016/j.ccr.2004.06.007
  47. Shaw RJ, Cantley LC (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 441, 424-30. https://doi.org/10.1038/nature04869
  48. Storozhuk Y, Sanli T, Hopmans SN, et al (2012). Chronic modulation of AMP-Kinase, Akt and mTOR pathways by ionizing radiation in human lung cancer xenografts. Radiat Oncol, 7, 71. https://doi.org/10.1186/1748-717X-7-71
  49. Street A, Macdonald A, Crowder K, Harris M (2004). The Hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade. J Biol Chem, 279, 12232-41. https://doi.org/10.1074/jbc.M312245200
  50. Tamm I, Wang Y, Sausville E, et al (1998). IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res, 58, 5315-20.
  51. Vaira V, Lee CW, Goel HL, et al (2007). Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene, 26, 2678-84. https://doi.org/10.1038/sj.onc.1210094
  52. Wang HW, Lin CP, Chiu JH, et al (2007). Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int J Cancer, 120, 2019-27. https://doi.org/10.1002/ijc.22402
  53. Wang X, Ling MT, Guan XY, et al (2004). Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene, 23, 474-82. https://doi.org/10.1038/sj.onc.1207128
  54. William WN, Kim JS, Liu DD, et al (2012). The impact of phosphorylated AMP-activated protein kinase expression on lung cancer survival. Ann Oncol, 23, 78-85. https://doi.org/10.1093/annonc/mdr036
  55. Woods A, Johnstone SR, Dickerson K, et al (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol, 13, 2004-8. https://doi.org/10.1016/j.cub.2003.10.031
  56. Wullschleger S, Loewith R, Hall MN (2006). TOR signaling in growth and metabolism. Cell, 124, 471-84. https://doi.org/10.1016/j.cell.2006.01.016
  57. Zhang XK (2007). Targeting Nur77 translocation. Expert Opin Ther Targets, 11, 69-79. https://doi.org/10.1517/14728222.11.1.69
  58. Zheng B, Jeong JH, Asara JM, et al (2009). Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell, 33, 237-47. https://doi.org/10.1016/j.molcel.2008.12.026

Cited by

  1. Systemic treatment in EGFR-ALK NSCLC patients: second line therapy and beyond vol.14, pp.7, 2014, https://doi.org/10.1586/14737140.2014.896210
  2. The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6463
  3. Recently Emerging Signaling Landscape of Ataxia-Telangiectasia Mutated (ATM) Kinase vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6485
  4. Genetic Variations in STK11, PRKAA1, and TSC1 Associated with Prognosis for Patients with Colorectal Cancer vol.21, pp.S4, 2014, https://doi.org/10.1245/s10434-014-3729-z
  5. Identification of Specific Gene Modules in Mouse Lung Tissue Exposed to Cigarette Smoke vol.16, pp.10, 2015, https://doi.org/10.7314/APJCP.2015.16.10.4251
  6. Metformin Addition to Chemotherapy in Stage IV Non-Small Cell Lung Cancer: an Open Label Randomized Controlled Study vol.16, pp.15, 2015, https://doi.org/10.7314/APJCP.2015.16.15.6621
  7. Metformin and lung cancer risk of patients with type 2 diabetes mellitus: A meta-analysis vol.3, pp.2, 2015, https://doi.org/10.3892/br.2015.417
  8. A Single-Nucleotide Polymorphism in Serine-Threonine Kinase 11, the Gene Encoding Liver Kinase B1, Is a Risk Factor for Multiple Sclerosis vol.7, pp.1, 2015, https://doi.org/10.1177/1759091415568914
  9. Expression and clinical significance of mammalian target of rapamycin/P70 ribosomal protein S6 kinase signaling pathway in human colorectal carcinoma tissue pp.1792-1082, 2015, https://doi.org/10.3892/ol.2015.3228
  10. Reciprocal expression of p-AMPKa and p-S6 is strongly associated with the prognosis of gastric cancer vol.37, pp.4, 2016, https://doi.org/10.1007/s13277-015-4193-5
  11. Lycorine Induces Apoptosis of A549 Cells via AMPK-Mammalian Target of Rapamycin (mTOR)-S6K Signaling Pathway vol.23, pp.1643-3750, 2017, https://doi.org/10.12659/MSM.900742
  12. DDX5 promotes gastric cancer cell proliferation in vitro and in vivo through mTOR signaling pathway vol.7, pp.2045-2322, 2017, https://doi.org/10.1038/srep42876
  13. Apoptosis triggered by isoquercitrin in bladder cancer cells by activating the AMPK-activated protein kinase pathway vol.8, pp.10, 2017, https://doi.org/10.1039/C7FO00778G
  14. Differential regulation of spermatogenic process by Lkb1 isoforms in mouse testis vol.8, pp.10, 2017, https://doi.org/10.1038/cddis.2017.527
  15. Metformin in Lung Cancer: Review of in Vitro and in Vivo Animal Studies vol.9, pp.5, 2017, https://doi.org/10.3390/cancers9050045
  16. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer vol.18, pp.2, 2017, https://doi.org/10.3390/ijms18020367
  17. Progress in the application and mechanism of metformin in treating non-small cell lung cancer vol.13, pp.5, 2017, https://doi.org/10.3892/ol.2017.5862
  18. Cytoplasmic liver kinase B1 promotes the growth of human lung adenocarcinoma by enhancing autophagy vol.109, pp.10, 2018, https://doi.org/10.1111/cas.13746
  19. Sodium butyrate induces autophagy in colorectal cancer cells through LKB1/AMPK signaling pp.1877-8755, 2018, https://doi.org/10.1007/s13105-018-0651-z
  20. Exendin-4 enhances radiation response of prostate cancer vol.78, pp.15, 2018, https://doi.org/10.1002/pros.23687
  21. Comparative Proteomics of Chromium-Transformed Beas-2B Cells by 2D-DIGE and MALDI-TOF/TOF MS vol.185, pp.1, 2018, https://doi.org/10.1007/s12011-017-1222-9
  22. (−)-Guaiol regulates autophagic cell death depending on mTOR signaling in NSCLC vol.19, pp.8, 2018, https://doi.org/10.1080/15384047.2018.1451277