Cryogenic Distillation Simulation for Hydrogen Isotopes Separation

수소 동위원소 분리를 위한 초저온증류공정 모사

  • Noh, Sanggyun (Department of Chemical & Biomolecular Engineering, Dong Yang University) ;
  • Rho, Jaehyun (Department of Chemical Engineering, Kong Ju National University) ;
  • Cho, Jungho (Department of Chemical Engineering, Kong Ju National University)
  • 노상균 (동양대학교 생명화학공학과) ;
  • 노재현 (공주대학교 화학공학부) ;
  • 조정호 (공주대학교 화학공학부)
  • Received : 2013.07.26
  • Accepted : 2013.09.06
  • Published : 2013.09.30


In this study, we have surveyed the new technologies in the cryogenic distillation of ITER, equilibrium reactors and helium refrigeration cycle contained in the isotope separation system (ISS). We also have collected thermodynamic and transport properties for $H_2$, HD, $D_2$, HT, DT and $T_2$ components of which properties are not built in a general purpose chemical process simulators such as Aspen Plus and PRO/II with PROVISION. Verification works have been performed to compare between literature data and simulation results. For the simulation of ISS involving six hydrogen isotope components, four distillation columns and two equilibrium reactors are used for the separation of $D_2$ and DT from $T_2$.


Hydrogen isotopes;Cryogenic distillation;Process simulation;Physical properties


  1. ITER IDM Document (ITER_D_2X6K67), Plant Description (PD), Chap. 10 Fuel Cycle and Radiological Monitoring (2009).
  2. D. Babineau, S. Maruyama, R. Pearce, M. Glugla, L. Bo, B. Rogers, S. Willms, G. Piazza, T. Yamanishi, S.H. Yun, L. Worth, and W. Shu,"Review of the ITER Fuel Cycle," IAEA FEC 2010, 2010.
  3. M. Glugla, D. Babineau, L. Bo, S. Maruyama, R. Pearce, G. Piazza, B. Rogers, S. Willms, T. Yamanishi, and S.-H. Yun, "Review of the ITER D-T Fuel Cycle Systems and Recent Progress," Tritium 2010, Nara, Japan, 2010.
  4. S. Maruyama, Y. Yang, R.A. Pitts, M. Sugihara, S. Putvinski, S. Carpentier- Chouchana, B. Li, W. Li, L. Baylor, S.J. Meitner, C. Day, B. laBombard, and M. Reinke, "ITER Fuelling System Design and Challenges-Gas and Pellet Injection and Disruption Mitigation," IAEA FEC 2010, 2010.
  5. S. Konishi, M. Glugla, and T. Hayashi, "Fuel Cycle Design for ITER and Its Extrapolation to DEMO," Fusion Engineering and Design, Vol. 83, 2008, pp. 954-958. DOI:
  6. M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, I.R. Cristescu, I. Cristescu, C. Day, L. Doerr, J.-P. Girard, and E. Tada, "The ITER Tritium System," Fusion Engineering and Design, Vol. 82, 2007, pp. 472-487. DOI:
  7. H. Yoshida, O. Kveton, J. Koonce, D. Holland, and R. Haange, "Status of the ITER Plant Design", Fusion Engineering and Design, Vol. 39-40, 1998, pp. 875-882. DOI:
  8. Ahn, D. H., Paek, S. W., Kim, K. R., Jeong, H. S., Choi, H. J., Kim, J. K., Kang, H. S., Lee, H. S., Kim, W. S. and Song, K. M., "Design of the Liquid Phase Catalytic Exchange Column for the Wolsong Tritium Removal Facility," Proceedings of the Korean Nuclear Society Spring Meeting, May 27-28 (2001).
  9. D. Y. Peng, and D. B. Robinson, "A New Two-constant Equation of State for Fluids and Fluid Mixtures", Ind. Eng. Chem. Fundam, 15, 8 (1976). DOI:
  10. G. Soave, "Equilibrium Constants from a Modified Redlich-Kwong Equation of State," Chem. Eng. Sci., 27(6), 1197-1203 (1972). DOI: