DOI QR코드

DOI QR Code

Properties of CaO added MgO Sintering at High Pressure and Low Temperatures

CaO 첨가된 MgO의 고압 저온 소결 조건에 따른 물성연구

  • Song, Jeongho (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 송정호 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2013.05.13
  • Accepted : 2013.09.06
  • Published : 2013.09.30

Abstract

We executed the property changes of the sintered MgO (99.9% purity, 300nm size) specimens with addition to CaO content of 0.00wt%, 0.25wt%, and 0.50wt%, processed at 7GPa, for 5min, 600~$800^{\circ}C$. To investigate the micro-structure and physical property changes of the sintered MgO(-CaO), we employed a scanning electron microscopy(SEM), X-ray diffractomerty(XRD), Vickers hardness, and density. The SEM result showed that MgO powder of 300nm size was changed into sintered structure of 520nm by high pressure and low temperature sintering, regardless of the CaO contents. According to the XRD analysis, no CaO phase observed, while MgO peaks shift indicated the existence of CaO in the MgO matrix. The Vickers hardness result showed that hardness of sintered MgO-CaO increased by 12% compared pure MgO under the same temperature conditions. It implied that we can obtain the same hardness with $100^{\circ}C$ lowered sintering temperatures by addition of CaO. The density results showed that it was possible to obtain density of 98%, which is 5% greater than that of pure MgO at low temperature of $600^{\circ}C$.

Keywords

CaO;density;HPHT sintering;MgO;Vickers hardness;XRD

Acknowledgement

Supported by : 한국연구재단

References

  1. A. Kamitani, H. Wakana, S. Adachi, Y. Nakajima, K. Higuchi, H. Yamamoto, K. Tanabe, Examination of MgO Insulator Thin Films for High-Tc Superconducting devices, Physica C, 426-431, 2, pp.1502-1507, 2005. https://doi.org/10.1016/j.physc.2005.02.117
  2. A. Krell, K. Waetzig, J. Klimke, Influence of the Structure of MgO.nAl2O3 Spinel Lattices on Transparent Ceramics Processing and Properties, J. Eur. Ceram. Soc.., 32, pp.2887-2898, 2012. DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2012.02.054 https://doi.org/10.1016/j.jeurceramsoc.2012.02.054
  3. V. Lupei, A. Lupei, A. Ikesue, Transparent Polycrystalline Ceramic Laser Materials, Optical Materials, 30, pp.1781-1786, 2008. DOI: http://dx.doi.org/10.1016/j.optmat.2008.03.003 https://doi.org/10.1016/j.optmat.2008.03.003
  4. T. R. Hinklin, S. C. Rand, R. M Laine, Transparent, Polycrystalline Upconverting Nanoceramics: Towards 3-D Displays, Advanced Materials, 20 pp.1-4 (2008). DOI: http://dx.doi.org/10.1002/adma.200701235 https://doi.org/10.1002/adma.200890067
  5. T. Yanagidaa, T. Itoha, H. Takahashia, S. Hirakuria, M. Kokubuna, K. Makishimaa, M. Satoa, T. Enotoa, T. Yanagitanic, H. Yagic, T. Shigetadd, T. Ito, Improvement of ceramic YAG(Ce) scintillators to $(YGd)_3Al_5O_{12}(Ce)$ for gamma-ray detectors, Nuclear Instruments and Methods in Physics Research A, 579, pp.23-26, 2007. DOI: http://dx.doi.org/10.1016/j.nima.2007.04.173 https://doi.org/10.1016/j.nima.2007.04.173
  6. M. Toshihiko, M. Yusuke, Y. Yoshituki, T. Satoshi, I. Takayasu, Effect of Silica and Boron Oxide on Transparency of Magnesia Ceramics, Journal of the Ceramic Society of Japan, 107, 1244, pp.343-348, 1999. DOI: http://dx.doi.org/10.2109/jcersj.107.343 https://doi.org/10.2109/jcersj.107.343
  7. D. Chen, E. H. Jordan, M. Gell, Pressureless Sintering of Translucent MgO Ceramics, Scripta Materialia, 29, pp.757-759, 2008. DOI: http://dx.doi.org/10.1016/j.scriptamat.2008.06.007 https://doi.org/10.1016/j.scriptamat.2008.06.007
  8. Y. Fang, D. Agrawal, G. Skandan, M. Jain, Fabrication of translucent MgO ceramics using nanopowders, Materials Latters, 58, pp.551-554, 2004. DOI: http://dx.doi.org/10.1016/S0167-577X(03)00560-3 https://doi.org/10.1016/S0167-577X(03)00560-3
  9. K. Itatani, T Tsujimoto, A. Kishimoto, Thermal and optical properties of transparent magnesium oxide ceramics fabricated by post hot-isostatic pressing, J. Eur. Ceram. Soc., 26, 4-5, pp.639-645, 2004.
  10. T. B. Tran, S. Hayun, A. Navrotsky, R. H. R. Castro, transparent nanocrystalline pure and Ca-Doped MgO by spark plasma sintering of anhydrous nanoparticles, J. Am. Ceram Soc., 95, 4, pp.1185-1188, 2012. DOI: http://dx.doi.org/10.1111/j.1551-2916.2012.05103.x https://doi.org/10.1111/j.1551-2916.2012.05103.x
  11. J. H. Song, Y. Y. Noh, O. S. Song, Property of MgO with Different Sintering Temperatures under High Pressures, Journal of the Korean Ceramic Society, 49, 6 pp.608-613, 2012. DOI: http://dx.doi.org/10.4191/kcers.2012.49.6.608 https://doi.org/10.4191/kcers.2012.49.6.608
  12. Ames S. Reed, Principles of Ceramics Processing : Second edition, John Wiley & Sons, INC., NewYork, pp.118-121, 1995.
  13. P. Wu, G. Eriksson, A. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the CaO-FeO, CaO-MgO, CaO0MnO, FeO-MgO, FeO-MnO, and MgO-MnO Systems, J. Am. Ceram Soc., 76, 8, pp.2065-2075, 1993. DOI: http://dx.doi.org/10.1111/j.1151-2916.1993.tb08334.x https://doi.org/10.1111/j.1151-2916.1993.tb08334.x
  14. K. D. Kim, Y. D. Kim, S. W, synthesis of Micromesoporous Magnesium Oxide Cubes with Nanograin Structures in a Supercritical Carbon Dioxide/Ethanol Solution, Journal of Nanoscience and Nanotechnology, 11 [7] 5823-8 (2011) DOI: http://dx.doi.org/10.1166/jnn.2011.4400 https://doi.org/10.1166/jnn.2011.4400