DOI QR코드

DOI QR Code

Enhancement of Dye Adsorption on TiO2 Surface through Hydroxylation Process for Dye-sensitized Solar Cells

  • Jang, Inseok (Department of Chemical Engineering, Hanyang University) ;
  • Song, Kyungho (Department of Chemical Engineering, Hanyang University) ;
  • Park, Jun-Hwan (Department of Chemical Engineering, Hanyang University) ;
  • Oh, Seong-Geun (Department of Chemical Engineering, Hanyang University)
  • Received : 2013.05.29
  • Accepted : 2013.07.03
  • Published : 2013.10.20

Abstract

To enhance the power conversion efficiency of dye-sensitized solar cell (DSSC), the surface of titanium dioxide ($TiO_2$) photoelectrode was modified by hydroxylation treatment with $NH_4OH$ solution at $70^{\circ}C$ for 6 h. The $NH_4OH$ solutions of various concentrations were used to introduce the hydroxyl groups on $TiO_2$ surface. As the concentration of $NH_4OH$ was increased, the short-circuit current density ($J_{SC}$) value and conversion efficiency of solar cells were increased because the amount of adsorbed dye molecules on $TiO_2$ surface was increased. As a result of the surface modification to introduce hydroxyl groups, the concentration of adsorbed dye on the $TiO_2$ surface could be improved up to 32.61% without the changes of morphology, surface area and pore volume of particles. The morphology, the specific surface area, the pore volume and the chemical states of $TiO_2$ surface were characterized by using FE-SEM, $N_2$ adsorption-desorption isotherms and XPS measurements. The amount of adsorbed dye and the performance of fabricated cells were analyzed by using UV-Vis absorption spectroscopy and solar simulator.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrey-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382. https://doi.org/10.1021/ja00067a063
  3. Hagfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49. https://doi.org/10.1021/cr00033a003
  4. Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269. https://doi.org/10.1021/ar980112j
  5. Gratzel, M. Prog. Photovolt. Res. Appl. 2000, 8, 171. https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
  6. Zaban, A.; Ferrere, S.; Gregg, B. A. J. Phys. Chem. B 1998, 102,452.
  7. Nazeeruddin, M. K.; Klein, C.; Liska, P.; Gratzel, M. Coord. Chem. Rev. 2005, 249, 1460. https://doi.org/10.1016/j.ccr.2005.03.025
  8. Giribabu, L.; Kumar, C. V.; Reddy, V. G.; Reddy, P. Y.; Rao, C. S.; Jang, S. R.; Yum, J. H.; Nazeeruddin, M. K.; Gratzel, M. Sol. Energ. Mat. Sol. C 2007, 91, 1611. https://doi.org/10.1016/j.solmat.2007.05.004
  9. Kim, H. S.; Lee, C.-R.; Jang, I. H.; Kang, W.; Park, N. G. Bull. Korean Chem. Soc. 2012, 33, 670. https://doi.org/10.5012/bkcs.2012.33.2.670
  10. Hosono, E.; Fujihara, S.; Kimura, T. Electrochim. Acta 2004, 49,2287. https://doi.org/10.1016/j.electacta.2004.01.009
  11. Liao, J. Y.; Ho, K. C. Sol. Energ. Mat. Sol. C 2005, 86, 229. https://doi.org/10.1016/j.solmat.2004.07.006
  12. Gao, Y.; Nagai, M. Langmuir 2006, 22, 3936. https://doi.org/10.1021/la053042f
  13. Li, Q.; Wu, J.; Tang, Q.; Lan, Z.; Li, P.; Lin, J.; Fan, L.; Electrochem. Commun. 2008, 10, 1299. https://doi.org/10.1016/j.elecom.2008.06.029
  14. Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J. I.; Murata, K. Sol. Energ. Mat. Sol. C 2003, 79, 459. https://doi.org/10.1016/S0927-0248(03)00021-7
  15. Koo, B. K.; Lee, D. Y.; Kim, H. J.; Lee, W. J.; Song, J. S.; Kim, H. J. J. Electroceram. 2006, 17, 79. https://doi.org/10.1007/s10832-006-9941-x
  16. Kawano, R.; Matsui, H.; Matsuyama, C.; Sato, A.; Susan, M. A. B. H.; Tanabe, N.; Watanabe, M. J. Photochem. Photobiol. A 2004, 164, 87. https://doi.org/10.1016/j.jphotochem.2003.12.019
  17. Suri, P.; Mehra, R. M. Sol. Energ. Mat. Sol. C 2007, 91, 518. https://doi.org/10.1016/j.solmat.2006.10.025
  18. Berginc, M.; Krasovec, U. O.; Jankovec, M.; Topi , M. Sol. Energ. Mat. Sol. C 2007, 91, 821. https://doi.org/10.1016/j.solmat.2007.02.001
  19. Chen, D.; Huang, F.; Cheng, Y. B.; Caruso, R. A. Adv. Mater. 2009, 21, 2206. https://doi.org/10.1002/adma.200802603
  20. Hannappel, T.; Burfeindt, B.; Storck, W.; Willig, F. J. Phys. Chem. B 1997, 101, 6799. https://doi.org/10.1021/jp971581q
  21. Wang, G.; Wang, Q.; Lu, W.; Li, J. J. Phys. Chem. B 2006, 110,22029. https://doi.org/10.1021/jp064630k
  22. Negishi, N.; Takeuchi, K.; Ibusuki, T. J. Mat. Sci. 1998, 33, 5789. https://doi.org/10.1023/A:1004441829285
  23. Tian, G.; Fu, H.; Jing, L.; Xin, B.; Pan, K. J. Phys. Chem. C 2008, 112, 3083. https://doi.org/10.1021/jp710283p
  24. Haile, S. M.; Staneff, G.; Ryu, K. H. J. Mat. Sci. 2001, 36, 1149. https://doi.org/10.1023/A:1004877708871
  25. Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, H. J. Am. Chem. Soc. 2004, 126, 7790. https://doi.org/10.1021/ja048820p
  26. Rehm, J. M.; McLendon, G. L.; Nagasawa, Y.; Yoshihara, K.; Moser, J.; Gratzel, M. J. Phys. Chem. 1996, 100, 9577. https://doi.org/10.1021/jp960155m
  27. O'Regan, B.; Schwartz, D. T. J. Appl. Phys. 1996, 80, 4749. https://doi.org/10.1063/1.363412
  28. Gratzel, M. J. Sol-Gel Sci. Technol. 2001, 22, 7. https://doi.org/10.1023/A:1011273700573
  29. Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J. Nano Lett. 2007, 7, 2183. https://doi.org/10.1021/nl070160+
  30. Dinh, N. N.; Bernard, M. C.; Goff, A. H. L.; Stergiopoulos, T.; Falaras, P. C. R. Chimie 2006, 9, 676. https://doi.org/10.1016/j.crci.2005.02.042
  31. Lin, S. C.; Lee, Y. L.; Chang, C. H.; Shen, Y. J.; Yang, Y. M. Appl. Phys. Lett. 2007, 90, 143517. https://doi.org/10.1063/1.2721373
  32. Ghosh, R.; Brennaman, M. K.; Uher, T.; Ok, M. R.; Samulski, E. T.; McNeil, L. E.; Meyer, T. J.; Lopez, R. ACS Appl. Mater. Interfaces 2011, 3, 3929. https://doi.org/10.1021/am200805x
  33. Jiu, J.; Isoda, S.; Wang, F.; Adachi, M. J. Phys. Chem. B 2006, 110, 2087. https://doi.org/10.1021/jp055824n
  34. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Chem. Commun. 2002, 1464.
  35. Sommeling, P. M.; O'Regan, B. C.; Haswell, R. R.; Smit, H. J. P.; Bakker, N. J.; Smits, J. J. T.; Kroon, J. M.; van Roosmalen, J. A. M. J. Phys. Chem. B 2006, 110, 19191. https://doi.org/10.1021/jp061346k
  36. Jung, H. S.; Lee, J. K.; Lee, S.; Hong, K. S.; Shin, H. J. Phys. Chem. C 2008, 112, 8476. https://doi.org/10.1021/jp711689u
  37. Park, K. H.; Jin, E. M.; Gu, H. B.; Shim, S. E.; Hong, C. K. Mater. Lett. 2009, 63, 2208. https://doi.org/10.1016/j.matlet.2009.07.034
  38. Kim, C.; Kim, J. T.; Kim, H.; Park, S. H.; Son, K. C.; Han, Y. S. Curr. Appl. Phys. 2010, 10, e176. https://doi.org/10.1016/j.cap.2010.06.006
  39. Jeong, H.; Lee, Y.; Kim, Y.; Kang, M. Korean J. Chem. Eng. 2010, 27, 1462. https://doi.org/10.1007/s11814-010-0252-1
  40. McCafferty, E.; Wightman, J. P. Surf. Interface Anal. 1998, 26, 549. https://doi.org/10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q
  41. Tamura, H.; Tanaka, A.; Mita, K.; Furuichi, R. J. Colloid Interf. Sci. 1999, 209, 225. https://doi.org/10.1006/jcis.1998.5877
  42. Tamura, H.; Mita, K.; Tanaka, A.; Ito, M. J. Colloid Interf. Sci. 2001, 243, 202. https://doi.org/10.1006/jcis.2001.7864
  43. Harju, M.; Mantyla, T.; Vaha-Heikkila, K.; Lehto, V. P. App. Surf. Sci. 2005, 249, 115. https://doi.org/10.1016/j.apsusc.2004.11.065
  44. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp: Eden Prairie, MN, 1992.
  45. Jung, C. K.; Bae, I. S.; Song, Y. H.; Kim, T. K.; Vlcek, J.; Musil, J.; Boo, J. H. Surf. Coat. Technol. 2005, 200, 534. https://doi.org/10.1016/j.surfcoat.2005.02.106
  46. Yu, J.; Zhao, X.; Du, J.; Chen, W. J. Sol-Gel Sci. Technol. 2000, 17, 163. https://doi.org/10.1023/A:1008703719929
  47. Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. Langmuir 2001, 17, 2664. https://doi.org/10.1021/la0015213
  48. Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H. Coord. Chem. Rev. 2004, 248, 1381. https://doi.org/10.1016/j.ccr.2004.03.006
  49. Kang, S. H.; Choi, S. H.; Kang, M. S.; Kim, J. Y.; Kim, H. S.; Hyeon, T.; Sung Y. E. Adv. Mater. 2008, 20, 54. https://doi.org/10.1002/adma.200701819

Cited by

  1. Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells vol.5, pp.1, 2015, https://doi.org/10.1038/srep12143
  2. Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material vol.8, pp.12, 2015, https://doi.org/10.1007/s12274-015-0883-y
  3. Ag–TiO2 composite photoelectrode for dye-sensitized solar cell vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0963-9
  4. An improvement of dye-sensitized solar cell by acid treatment on modified ZnO photoanode vol.177, pp.1, 2017, https://doi.org/10.1080/10584587.2017.1284537
  5. One-dimensional light-colored conductive antimony-doped tin oxide@TiO2 whiskers: synthesis and applications pp.1573-482X, 2017, https://doi.org/10.1007/s10854-017-7954-7
  6. The Effect of Sintering and Soaking Temperature on the Dye-Sensitized Solar Cell Performance vol.827, pp.1662-9752, 2015, https://doi.org/10.4028/www.scientific.net/MSF.827.135
  7. Synthesis and applications of nano-TiO2: a review vol.26, pp.4, 2019, https://doi.org/10.1007/s11356-018-3884-z