Establishment of Analytical Method for Pymetrozine Residues in Crops Using Liquid-Liquid Extraction(LLE)

액-액 분배법을 활용한 작물 중 pymetrozine의 잔류분석법 확립

  • Yoon, Ji-Young (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Moon, Hye-Ree (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Park, Jae-Hun (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Han, Ye-Hoon (Syngenta, Korea Ltd.) ;
  • Lee, Kyu-Seung (Department of Bio-Environmental Chemistry, Chungnam National University)
  • 윤지영 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 문혜리 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 박재훈 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 한예훈 (신젠타 코리아(주)) ;
  • 이규승 (충남대학교 농업생명과학대학 생물환경화학과)
  • Received : 2013.05.14
  • Accepted : 2013.06.19
  • Published : 2013.08.30


Polar pesticides like pymetrozine (log $P_{ow}$: -0.18) are known to be difficult to analyze. The analytical method of pymetrozine using hydromatrix included in the official method of KFDA was uncommon and provided ambiguous evidence to confirm both the identity and the quantity. Therefore, precise single residue analytical method was developed in representative crops for using liquid-liquid extraction (LLE). The pymetrozine residue was extracted with methanol from 11 representative crops which comprised apple, blueberry, broccoli, cabbage, cherry, crown daisy, hulled rice, Korean cabbage, potato, rice and watermelon. The extract was purified serially by liquid-liquid extraction (LLE) and silica solid phase extraction (SPE). For rice and hulled rice samples, n-hexane partition was additionally adopted to remove nonpolar interferences, mainly lipids. The residue levels were analyzed by HPLC with DAD, using $C_8$ column. LOQ (limit of quantitation) of pymetroizinie was 1 ng (S/N > 10) and MQL (method quantitation limit) was 0.01 mg/kg. Mean recoveries from 11 crop samples fortified at three levels (MQL, 10 ${\times}$ MQL and 50 ${\times}$ MQL) in triplicate were in the range of 83.1~98.5% with coefficients of variation (CV) of less than 10%, regardless of sample type, which satisfies the criteria of KFDA. The method established in this study could be applied to most of crops as an official and general method for analysis of pymetrozine residue.

액-액 분배법을 이용한 pymetrozine의 잔류분석방법을 다양한 작물에 적용이 가능하도록 작물의 특성과 대상농약의 물리화학적 특성을 고려하여 간섭물질을 최소화한 방법을 확립하였다. 확립된 분석법의 validation을 진행하였으며 정확성 및 정밀성, 검출한계, 정량한계, 직선성(표준물질의 검량선)을 기준으로 진행하였다. 대표 농산물로 쌀, 현미, 감자, 고추, 배추, 브로콜리, 수박, 쑥갓, 블루베리, 사과 및 체리를 선정하였으며, 농산물 시료에 borax 완충용액과 1N-NaOH 수용액을 가하여 pH를 조절하고 methanol로 추출된 pymetrozine 잔류분은 dichloromethane 액-액 분배법과 silica SPE cartridge를 이용한 silica 흡착크로마토그래피법으로 정제하여 분석대상 시료로 하였다. Pymetrozine의 정량적 분석을 위한 최적 HPLC 분석 조건을 확립하였고, $C_8$ 칼럼을 이용한 HPLC 분석 시 불순물의 간섭은 없었으며, 11종의 대표 농산물 중 pymetrozine의 분석정량한계(MQL)는 0.01 mg/kg이었다. 전체 농산물에 대한 회수율은 83.1~98.5%였으며, 농산물 시료 및 처리수준에 관계없이 반복 간 분석오차는 10% 미만을 나타내어 잔류분석 기준이내를 만족하였다. 검출한계, 회수율 및 분석오차 면에서 국제적 분석기준을 충분히 만족하였으므로, 본 연구에서 확립된 분석법은 기존의 hydromatrix 분배법을 대체하여 농산물 중 pymetrozine의 잔류분석법으로 사용이 가능할 것으로 판단된다.



  1. Codex Alimentarius Commission (CAC) (2003) Guidelines on good laboratory practice in residue analysis, CAC/GL 40- 1993, Rev.1-2003, Rome, Italy.
  2. Cun, L., Y. Ting, H. Weiguo and W. Yinliang (2011) Residue and dynamics of pymetrozine in rice field ecosystem. Chemosphere. 82:901-904.
  3. Fuog, D., S.J. Fergusson and C. Fluckiger (1998) Pymetrozine: a novel insecticide affecting aphids and whiteflies, In: Ishaaya, I. and Degheele, D.(Eds), Insecticides with Novel Modes of Action: Mechanism and Application, Springer, Berlin, Germany, pp.40-49.
  4. Guoqing, S., H. Xuan and H. Yinan (2009) Kinetic study of the degradation of the insecticide pymetrozine in a vegetablefield ecosystem. J. Hazard. Mater. 164:497-501.
  5. Harrewijin, P. and H. Kayser (1997) Pymetrozine, a fast-acting and selective inhibitor of aphid feeding. In-situ studies with electronic monitoring of feeding behavior. Pestic. sci. 49:130-140.<130::AID-PS509>3.0.CO;2-U
  6. Hong, J.H., C.R. Lee, J.S. Lim and K.S. Lee (2011) Comparison of analytical methods and residue patterns of pymetrozine in Aster scaber. Bull. Environ. Contam. Toxicol. 87:649-652.
  7. Hwang, J.I., Y.H. Jeon, H.Y. Kim, J.H. Kim, J.W. Ahn, D.R. Seok, Y.J. Lee, J.Y. Park, D.H. Kim and J.E. Kim (2011) Improvement of analytical method for rsidue pesticides in herbal medicines using macroporous diatomaceous earth column. Korean J. Environ. Agric. 5(2):140-148.
  8. Kayser, H., L. Kaufmann and F. Schurmann (1994) Pymetrozine (CGA 215, 944): a novel compound for aphid and whitefly control. An overview of its mode of action. Proc Brighton Crop protect conf-Pests and Diseases, BCPC, Alton, Hants, UK, pp.737-742.
  9. Korea Food & Drug Administration(KFDA) (2012) MRLs for Pesticide in Foods.
  10. Korea Food & Drug Administration(KFDA) (2012) Practical commentary Korean Food Standards Codex pesticide residues analysis method, third ed. pp. 1-91, 449-452.
  11. Kristinsson, H. (1994) Pymetrozine: A new insecticide, in: Briggs, G.G. (Eds), Advances in the Chemistry of insect Control III. The Royal Society of Chemistry, Cambridge, pp.85-102.
  12. Lee, H.R., M.J. Riu, E.H. Kim, J.K. Moon, J.A. Do, J.H. Oh, K.S. Kwon, M.H. Im, Y.D. Lee and J.H. Kim (2010) Establishment of analytical method for cyprodinil residue in apple, mandarin, Korean cabbage and green pepper. 2010. Korean J. Pestic. Sci. 14(4):371-380.
  13. Tomlin, C.D.S. (2009) The pesticide manual: A world compendium, fifteenth ed., BCPC, Hampshire, UK.
  14. Zhang, X., X. Cheng, C. Wang, Z. Xi and Q. Li (2007) Efficient high-performance liquid chromatography with liquid-liquid partition cleanup method for the determination of pymetrozine in tobacco. Annali di Chimica. 97:295-301.