• Gao, Jian (School of Sciense, Shandong University of Technology)
  • Received : 2012.06.14
  • Accepted : 2012.10.10
  • Published : 2013.05.30


In this paper, we study a special class of linear codes, called skew cyclic codes, over the ring $R=F_p+vF_p$, where $p$ is a prime number and $v^2=v$. We investigate the structural properties of skew polynomial ring $R[x,{\theta}]$ and the set $R[x,{\theta}]/(x^n-1)$. Our results show that these codes are equivalent to either cyclic codes or quasi-cyclic codes. Based on this fact, we give the enumeration of distinct skew cyclic codes over R.


  1. D. Boucher and F. Ulmer, Coding with skew polynoial rings, J. Symb. Comput 44 (2009), 1644-1656.
  2. D. Boucher, W. Geiselmann and F. Ulmer, Skew cyclic codes, Appl. Algebra Eng. Commun. Comput 18 (2007), 379-389.
  3. I. Siap, T. Abualrub, N. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length, Inf. Coding Theory 2 (2011), 10-20.
  4. M. Bhaintwal, Skew quasi-cyclic codes over Galois rings, Des. Codes Cryptogr (2011), DOI10.1007/s10623-011-9494-0.
  5. S. Zhu and Y. Wang, A class of constacyclic codes over $F_p$ + $vF_p$ and its Gray image, Discrete. Math 311 (2011), 2677-2682.
  6. T. Abualrub, A. Ghrayeb, N. Aydim and I. Siap, On the construction of skew quasi-cyclic codes, IEEE. Trans. Inform. Theory 56(2010), 2081-2090.

Cited by

  1. On the linear codes over the ring Rp vol.08, pp.02, 2016,
  2. Skew-cyclic codes over $$B_k$$ B k 2017,
  3. Some results on the linear codes over the finite ring F2+v1F2+⋯+vrF2 vol.14, pp.01, 2016,
  4. On skew cyclic codes over a semi-local ring vol.07, pp.04, 2015,
  5. Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$ vol.8, pp.3, 2014,
  6. ΘS-cyclic codes overAk vol.1, pp.1, 2016,
  7. Skew cyclic codes over Fq + uFq + vFq 2017,
  8. Skew cyclic and skew constacyclic codes over the ring 𝔽p + u1𝔽p + ⋯ + u2m𝔽p pp.1793-7183, 2018,
  9. Skew quasi cyclic codes over 𝔽q + v𝔽q pp.1793-6829, 2018,