The Regulation of Lipolysis in Adipose Tissue

  • Serr, Julie (Department of Animal Sciences, The Ohio State University) ;
  • Li, Xiang (Department of Animal Sciences, The Ohio State University) ;
  • Lee, Kichoon (Department of Animal Sciences, The Ohio State University)
  • Received : 2013.04.04
  • Accepted : 2013.08.01
  • Published : 2013.08.31


Knowledge regarding lipid catabolism has been of great interest in the field of animal sciences. In the livestock industry, excess fat accretion in meat is costly to the producer and undesirable to the consumer. However, intramuscular fat (marbling) is desirable to enhance carcass and product quality. The manipulation of lipid content to meet the goals of animal production requires an understanding of the detailed mechanisms of lipid catabolism to help meticulously design nutritional, pharmacological, and physiological approaches to regulate fat accretion. The concept of a basic system of lipases and their co-regulators has been identified. The major lipases cleave triacylglycerol (TAG) stored in lipid droplets in a sequential manner. In adipose tissue, adipose triglyceride lipase (ATGL) performs the first and rate-limiting step of TAG breakdown through hydrolysis at the sn-1 position of TAG to release a non-esterified fatty acid (NEFA) and diacylglycerol (DAG). Subsequently, cleavage of DAG occurs via the rate-limiting enzyme hormone-sensitive lipase (HSL) for DAG catabolism, which is followed by monoglyceride lipase (MGL) for monoacylglycerol (MAG) hydrolysis. Recent identification of the co-activator (Comparative Gene Identification-58) and inhibitor [G(0)/G(1) Switch Gene 2] of ATGL have helped elucidate this important initial step of TAG breakdown, while also generating more questions. Additionally, the roles of these lipolysis-related enzymes in muscle, liver and skin tissue have also been found to be of great importance for the investigation of systemic lipolytic regulation.




  1. Ailhaud, G. and Hauner, H. 2004. Development of white adipose tissue. Handbook of Obesity, Etiology and Pathophysiology, 2nd edition, eds. G. A. Bray and C. Bouchard, Marcel Dekker, New York, NY, pp. 48.
  2. Bernlohr, D. A., Jenkins, A. E. and Bennaars, A. A. 2002. Adipose tissue and lipid metabolism. Fourth edition ed. Vance, D. E., Vance, J. E., Biochemistry of Lipids, Lipoproteins and Membrances, Elsevier, Amsterdam, pp. 263-289.
  3. Bertrand, T., Auge, F., Houtmann, J., Rak, A., Vallee, F., Mikol, V., Berne, P. F., Michot, N., Cheuret, D., Hoornaert, C. and Mathieu, M. 2010. Structural basis for human monoglyceride lipase inhibition. J. Mol. Biol. 396:663-673.
  4. Borgstrom, B. and Erlanson, C. 1971. Pancreatic juice co-lipase: physiological importance. Biochim. Biophys. Acta. 20:509-513.
  5. Chakrabarti, P., English, T., Shi, J., Smas, C. M. and Kandror, K. V. 2010. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59:775-781.
  6. Chanarin, I., Patel, A., Slavin, G., Willis, E. J., Andrews, T. M. and Stewart, G. 1975. Neutral-lipid storage disease: a new disorder of lipid metabolism. Br. Med. J. 1:553-555.
  7. Cinti, S. 2006. The role of brown adipose tissue in human obesity. Nutr. Metab. Cardiovasc. Dis. 16:569-574.
  8. Cornaciu, I., Boeszoermenyi, A., Lindermuth, H., Nagy, H. M., Cerk, I. K., Ebner, C., Salzburger, B., Gruber, A., Schweiger, M., Zechner, R., Lass, A., Zimmermann, R. and Oberer, M. 2011. The minimal domain of adipose triglyceride lipase (ATGL) ranges until leucine 254 and can be activated and inhibited by CGI-58 and G0S2, respectively. PLoS One 6:26349.
  9. Coppack, S. W., Jensen, M. D. and Miles, J. M. 1994. In vivo regulation of lipolysis in humans. J. Lipid Res. 35:177-193.
  10. DeFronzo, R. A. 2004. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North Am. 88:787-835.
  11. Deiuliis, J. A. 2007. The metabolic and molecular regulation of adipose triglyceride lipase. Ph. D. Dissertation. The Ohio State University, Columbus.
  12. Deiuliis, J. A., Shin, J., Bae, D., Azain, M. J., Barb, R. and Lee, K. 2008. Developmental, hormonal, and nutritional regulation of porcine adipose triglyceride lipase (ATGL). Lipids 43:215-225.
  13. Eastmond, P. J. 2006. Sugar-dependent1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell. 18:665-675.
  14. Enerback, S. 2010. Human brown adipose tissue. Cell Metab. 11:248-252.
  15. Festuccia, W. T., Laplante, M., Berthiaume, M., Gelinas, Y. and Deshaies, Y. 2006. PPARgamma agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control. Diabetologia. 49:2427-2436.
  16. Fischer, J., Negre-Salvayre, A. and Slavayre, R. 2007. Neutral lipid storage diseases and ATGL (adipose triglyceride lipase) and CGI-58/ABHD5 (alpha-beta hydrolase domain-containing 5) deficiency: myopathy, ichthyosis, but not obesity. Med. Sci. (Paris). 23:575-578.
  17. Fortin, A., Robertson, W. M. and Tong, A. K. W. 2005. The eating quality of Canadian pork and its relationship with intramuscular fat. Meat Sci. 69:297-305.
  18. Gardan, D., Gondret, F. and Louveau, I. 2006. Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. Am. J. Physiol. Endocrinol. Metab. 291:372-380.
  19. Ghosh, A. K., Ramakrishnan, G., Chandramohan, C. and Rajasekharan, R. 2008. CGI-58, the causative gene for Chanarin-Dorfman syndrome, mediates acylation of lysophosphatidic acid. J. Biol.Chem. 283:24525-24533.
  20. Giordano, A., Frontini, A. and Cinti, S. 2008. Adipose organ nerves revealed by immunohistochemistry. Methods Mol. Biol. 456:83-95.
  21. Gjerlaug-Enger, E., Aass, L., Odegard, J. and Vangen, O. 2010. Genetic parameters of meat quality traits in two pig breeds measured by rapid methods. Animal 4:1832-1843.
  22. Granneman, J. G., Moore, H. P., Granneman, R. L., Greenberg, A. S., Obin, M. S. and Zhu, Z. 2007. Analysis of lipolytic protein trafficking and interactions in adipocytes. J. Biol. Chem. 282:5726-5735.
  23. Gruber, A., Cornaciu, I., Lass, A., Schweiger, M., Poeschl, M., Eder, C., Kumari, M., Schoiswohl, G., Wolinski, H., Kohlwein, S. D., Zechner, R., Zimmermann, R. and Oberer, M. 2010. The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase. J. Biol. Chem. 285:12289-12298.
  24. Hamill, R. M., McBryan, J., McGee, C., Mullen, A. M., Sweeney, T., Talbot, A., Cairns, M. T. and Davey, G. C. 2012. Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork. Meat Sci. 92:440-450.
  25. Hausman, G. J., Dodson, M. V., Ajuwon, K., Azain, M., Barnes, K. M., Guan, L. L., Jiang, Z., Poulos, S. P., Sainz, R. D., Smith, S., Spurlock, M., Novakofski, J., Fernyhough, M. E. and Bergen, W. G. 2009. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87:1218-1246.
  26. Holm, C., Belfrage, P. and Fredrikson, G. 1987. Immunological evidence for the presence of hormone-sensitive lipase in rat tissues other than adipose tissue. Biochem. Biophys. Res. Commun. 148:99-105.
  27. Holm, C., Belfrage, P., Osterlund, T., Davis, R. C., Schotz, M. C. and Langin, D. 1994. Hormone-sensitive lipase: structure, function, evolution and overproduction in insect cells using the baculovirus expression system. Protein Eng. 7:537-541.
  28. Hovenier, R., Kanis, E. and Verhoeven, J. A. 1993. Repeatability of taste panel tenderness scores and their relationships to objective pig meat quality traits. J. Anim. Sci. 71:2018-2025.
  29. Jenkins, C. M., Mancuso, D. J., Yan, W., Sims, H. F., Gibson, B. and Gross, R. W. 2004. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 279:48968-48975.
  30. Jeong, J., Kwon, E. G., Im, S. K., Seo, K. S. and Baik, M. 2012. Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J. Anim. Sci. 90:2044-20453.
  31. Jocken, J. W., Langin, D., Smit, E., Saris, W. H., Valle, C., Hul, G. B., Holm, C., Arner, P. and Blaak, E. E. 2007. Adipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. J. Clin. Endocrinol. Metab. 92:2292-2299.
  32. Karlsson, M., Contreras, J. A., Hellman, U., Tornqvist, H. and Holm, C. 1997. cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J. Biol. Chem. 272:27218-27223.
  33. Kershaw, E. E., Hamm, J. K., Verhagen, L. A., Peroni, O., Katic, M. and Flier, J. S. 2006. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 55:148-157.
  34. Kim, J. Y., Tillison, K., Lee, J. H., Rearick, D. A. and Smas, C. M. 2006. The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-alpha in 3T3-L1 adipocytes and is a target for transactivation by PPARgamma. Am. J. Physiol. Endocrinol. Metab. 291:E115-127.
  35. Kinnunen, P. K., Jackson, R. L., Smith, L. C., Gotto, A. M. Jr. and Sparrow, J. T. 1977. Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II. Proc. Natl. Acad. Sci. USA. 74:4848-4851.
  36. Kraemer, F. B., Patel, S., Sadi, M. S. and Sztalryd, C. 1993. Detection of hormone-sensitive lipase in various tissues. I. Expression of an HSL/bacterial fusion protein and generation of anti-HSL antibodies. J. Lipid Res. 34:663-671.
  37. Kralisch, S., Klein, J., Lossner, U., Bluher, M., Paschke, R., Stumvoll, M. and Fasshauer, M. 2005. Isoproterenol, TNFalpha, and insulin downregulate adipose triglyceride lipase in 3T3-L1 adipocytes. Mol. Cell. Endocrinol. 240:43-49.
  38. Labar, G. C., Bauvois, F. B., Ferrer, J. L., Wouters, J. and Lambert, D. M. 2010. Crystal structure of the human mono-acylglycerol lipase, a key actor in endocannabinoid signaling. Chembiochem. 11:218-227.
  39. Lake, A. C., Sun, Y., Li, J. L., Johnson, J. W., Li, D., Revett, T., Shih, H. H., Liu, W., Paulsen, J. E. and Gimeno, R. E. 2005. Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. J. Lipid Res. 46:2477-2487.
  40. Langin, D., Laurell, H., Holst, L. S., Belfrage, P. and Holm, C. 1993. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antartic bacterium. Proc. Natl. Acad. Sci. 90:4897-4901.
  41. Lass, A., Zimmermann, R., Oberer, M. and Zechner, R. 2011. Lipolysis- a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res. 50:14-27.
  42. Lass, A., Zimmermann, R., Haemmerle, G., Riederer, M., Schoiswohl, G., Schweiger, M., Kienesberger, P., Strauss, J. G., Gokiewicz, G. and Zechner, R. 2006. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 3:309-319.
  43. Lau, D. C., Dhillon, B., Yan, H., Szmitko, P. E. and Verma, S. 2005. Adipokines: molecular links between obesity and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 288(5):H2031-41.
  44. Lee, S. H., Park, E. W., Cho, Y. M., Kim, S. K., Lee, J. H., Jeon, J. T., Lee, C. S., Im, S. K., Oh, S. J., Thompson, J. M. and Yoon, D. 2007. Identification of differentially expressed genes related to intramuscular fat development in the early and late fattening stages of hanwoo steers. J. Biochem. Mol. Biol. 40:757-764.
  45. Lee, K., Shin, J., Latshaw, J. D., Suh, Y. and Serr, J. 2009. Cloning of adipose triglyceride lipase in poultry and expression of adipose triglyceride lipase during development of adipose in chickens. Poult. Sci. 88:620-630.
  46. Lefevre, C., Jobard, F., Caux, F., Bouadjar, B., Karaduman, A., Heilig, R., Lakhdar, H., Wollenberg, A., Verret, J. L., Weissenbach, J., Ozguc, M., Lathrop, M., Prud'homme, J. F. and Fischer, J. 2001. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am. J. Hum. Genet. 69:1002-1012.
  47. Lefevre, C., Jobard, F., Caux, F., Bouadjar, B., Karaduman, A., Heilig, R., Lakhdar, H., Wollenberg, A.., Verret, J. L., Weissenbach, J., Ozguc, M., Lathrop, M., Prud'homme, J. F. and Fischer, J. 2001. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am. J. Hum. Genet. 69:1002-1012.
  48. Li, X., Suh, Y., Kim, B. R., Moeller, S. J. and Lee, K. 2012. Alternative splicing and developmental and hormonal regulation of porcine comparative gene identification-58 (CGI-58) mRNA. J. Anim. Sci. 90:4346-4354.
  49. Li, Y., Zheng, X. and Yang, G. 2008. Effects of leptin on porcine primary adipocytes lipolysis and mRNA expression of key lipolytic enzymes. Sheng Wu Gong Cheng Xue Bao. 24:1612-1619.
  50. Li, Y. C., Zheng, X. L., Liu, B. T. and Yang, G. S. 2010. Regulation of ATGL expression mediated by leptin in vitro in porcine adipocyte lipolysis. Mol. Cell Biochem. 333(1-2):121-8.
  51. Liu, L. F., Purushotham, A., Wendel, A. A., Koba, K., Deiuliis, J., Lee, K. and Belury, M. A. 2009. Regulation of adipose triglyceride lipase by rosiglitazone. Diabetes Obes. Metab. 11:131-142.
  52. Lu, X., Yang, X. and Liu, J. 2010. Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell Cycle. 9:2719-2725.
  53. McGarry, J. D. 2002. Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7-18.
  54. Miyoshi, H., Perfield, J. W., Obin, M. S. and Greenberg, A. S. 2008. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J. Cell Biochem. 105:1430-1436.
  55. Miyoshi, H., Souza, S. C., Zhang, H. H., Strissel, K. J., Christoffolete, M. A., Kovsan, J., Rudich, A., Kraemer, F. B., Bianco, A. C., Obin, M. S. and Greenberg, A. S. 2006. Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J. Biol. Chem. 281:15837-15844.
  56. Montero-Moran, G., Caviglia, J. M., McMahon, D., Rothenberg, A., Subramanian, V., Xu, Z., Lara-Gonzalex, S., Storch, J., Carman, J. G. and Brasaemle, D. L. 2010. CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase. J. Lipid Res. 51:709-719.
  57. Mourot, J. and Kouba, M. 1998. Lipogenic enzyme activities in muscles of growing Large White and Meishan Pigs. Livest. Prod. Sci. 55:127-133
  58. Notari, L, Baladron, V., Aroca-Aguilar, J. D., Balko, N., Heredia, R., Meyer, C., Notario, P. M., Saravanamuthu, S., Nueda, M. L., Sanchez-Sanchez, F., Escribano, J., Laborda, J. and Becerra, S. P. 2006. Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor. J. Biol. Chem. 281:38022-38037.
  59. Oh, S. A., Suh, Y., Pang, M. G. and Lee, K. 2010. Cloning of avian G(0)/G(1) switch gene 2 genes and developmental and nutritional regulation of G(0)/G(1) switch gene 2 in chicken adipose tissue. J. Anim. Sci. 89:367-375.
  60. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I. and Schrag, J. 1992. The alpha/beta hydrolase fold. Protein Eng. 5:197-211.
  61. Osterlund, T., Danielsson, B., Degerman, E., Contreras, J. A., Edgren, G., Davis, R. C., Schotz, M. C. and Holm, C. 1996. Domain-structure analysis of recombinant rat hormone-sensitive lipase. Biochem. J. 319:411-420.
  62. Pagnon, J., Matzaris, M., Stark, R., Meex, R. C., Lance Macaulay, S., Brown, W., O'Brien, P. E., Tiganis, T. and Watt, M. J. 2012. Identification and Functional Characterization of Protein Kinase A Phosphorylation Sites in the Major Lipolytic Protein, Adipose Triglyceride Lipase. Endocrinology 153:4278-4289.
  63. Pethick, D. W., Harper, G. S., Oddy, V. H. 2004. Growth, development and nutritional manipulation of marbling in cattle: a review. Aust. J. Exp.Agric. 44:705-715.
  64. Peyot, M. L., Guay, C., Latour, M. G., Lamontagne, J., Lussier, R., Pineda, M., Ruderman, N. B., Haemmerle, G., Zechner, R., Joly, E., Madiraju, S. R., Poitout, V. and Prentki, M. 2009. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion. J. Biol. Chem. 284:16848-16859.
  65. Radner, F. P., Grond, S., Haemmerle, G., Lass, A. and Zechner, R. 2011. Fat in the skin: Triacylglycerol metabolism in keratinocytes and its role in the development of neutral lipid storage disease. Dermatoendocrinol. 3:77-83.
  66. Russell, L. and Forsdyke, D. R. 1991. A human putative lymphocyte G0/G1 switch gene containing a CpG-rich island encodes a small basic protein with the potential to be phosphorylated. DNA Cell Biol. 10:581-591.
  67. Schlosburg, J. E., Blankman, J. L., Long, J. Z., Nomura, D. K., Pan, B., Kinsey, S. G., Nguyen, P. T., Ramesh, D., Booker, L., Burston, J. J., Thomas, E. A., Selley, D. E., Sim-Selley, L. J., Liu, Q. S., Lichtman, A. H. and Cravatt, B. F. 2010. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat. Neurosci. 13:1113-1119.
  68. Schweiger, M., Lass, A., Zimmermann, R., Eichmann, T. O. and Zechner, R. 2009. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am. J. Physiol. Endocrinol. Metab. 297:E289-296.
  69. Schweiger, M., Schoiswohl, G., Lass, A., Radner, F. P., Haemmerle, G., Malli, R., Graier, W., Cornaciu, I., Oberer, M., Salvayre, R., Fischer, J., Zechner, R. and Zimmermann, R. 2008. The C-terminal region of human adipose triglyceride lipase affects enzyme activity and lipid droplet binding. J. Biol. Chem. 283:17211-17220.
  70. Serr, J., Suh, Y. and Lee, K. 2009. Regulation of adipose triglyceride lipase by fasting and refeeding in avian species. Poult. Sci. 88:2585-2591.
  71. Serr, J., Suh, Y. and Lee, K. 2011. Cloning of comparative gene identification-58 gene in avian species and investigation of its developmental and nutritional regulation in chicken adipose tissue. J. Anim. Sci. 89:3490-3500.
  72. Shan, T., Wu, T., Reng, Y. and Wang, Y. 2009. Breed difference and regulation of the porcine adipose triglyceride lipase and hormone sensitive lipase by TNFalpha. Anim. Genet. 40:863-870.
  73. Shen, W. J., Liang, Y., Hong, R., Patel, S., Natu, V., Sridhar, K., Jenkins, A., Bernlohr, D. A. and Kraemer, F. B. 2001. Characterization of the functional interaction of adipocyte lipid-binding protein with hormone-sensitive lipase. J. Biol. Chem. 376:49443-49448.
  74. Smekal, G., von Duvillard, S. P., Pokan, R., Tschan, H., Baron, R., Hofmann, P., Wonisch, M. and Bachl, N. 2003. Effect of endurance training on muscle fat metabolism during prolonged exercise: agreements and disagreements. Nutrition 19:891-900.
  75. Subramanian, V., Rothenberg, A., Gomez, C., Cohen, A. W., Garcia, A., Bhattacharyya, S., Shapiro, L., Dolios, G., Wang, R., Lisanti, M. P. and Brasaemle, D. L. 2004. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J. Biol. Chem. 279:42062-42071.
  76. Tornqvist, H. and Belfrage, P. 1976. Determination of protein in adipose tissue extracts. FEBS Lett. 75:259-264.
  77. Vaughan, M., Berger, J. E. and Steinberg, D. 1964. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J. Biol. Chem. 239:401-409.
  78. Villena, J. A., Roy, S., Sarkadi-Nagy, E., Kim, K. H. and Sul, H. S. 2004. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem. 279:47066-47075.
  79. Waki, H. and Tontonoz, P. 2007. Endocrine functions of adipose tissue. Annu. Rev. Pathol. 2:31-56.
  80. Watt, M. J. and Steinberg, G. R. 2008. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem. J. 414:313-325.
  81. Xu, C., Jinhan, H., Jiang, H., Zu, L., Zhai, W., Pu, S. and Xu, G. 2009. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol. Endocrinol. 23:1161-1170.
  82. Yamaguchi, T., Omatsu, N., Matsushita, S. and Osumi, T. 2004. CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J. Biol. Chem. 279:30490-30497.
  83. Yang, X., Lu, X. and Liu, J. 2010a. Identification of a novel splicing isoform of murine CGI-58. FEBS Lett. 584:903-910.
  84. Yang, X., Lu, X., Lombes, M., Rha, G. B., Chi, Y. I., Guerin, T. M., Smart, E. J. and Liu, J. 2010b. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 11:194-205.
  85. Zandenbergen, F., Madard, S., Escher, P., Tan, N. S., Patsouris, D., Jatkoe, T., Rojas-Caro, S., Madore, S., Wahli, W., Tafuri, S., Muller, M. and Kersten, S. 2005. The G0/G1 switch gene 2 is a novel PPAR target gene. Biochem. 392:313-24.
  86. Zechner, R., Strauss, J. G., Haemmerle, G., Lass, A. and Zimmermann, R. 2005. Lipolysis: pathway under construction. Curr. Opin. Lipidol. 16:333-340.
  87. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J. M. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425-432.
  88. Zhao, S. M., Ren, L. J., Chen, L., Zhang, X., Cheng, M. L., Li, W. Z., Zhang, Y. Y. and Gao, S. Z. 2009. Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition. Lipids 44:1029-1037.
  89. Zimmermann, R., Strauss, J. G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A. and Zechner, R. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383-1386.

Cited by

  1. Effect of Chicken Feather Meal on the Feed Conversion Ratio and Blood Lipid Profile of Broiler Chickens vol.11, pp.2, 2017,