DOI QR코드

DOI QR Code

Growth Properties of Carbon Nanowall According to the Substrate Angle

기판 각도에 따른 탄소나노월의 성장 특성

  • Kim, Sung Yun (Department of Electrical Engineering, Hanbat National University) ;
  • Joung, Yeun-Ho (Department of Control Engineering, Hanbat National University) ;
  • Han, Jae Chan (ILSOM Co., Ltd.) ;
  • Choi, Won Seok (Department of Electrical Engineering, Hanbat National University)
  • 김성윤 (국립한밭대학교 전기공학과) ;
  • 정연호 (국립한밭대학교 제어공학과) ;
  • 한재찬 (일솜 주식회사) ;
  • 최원석 (국립한밭대학교 전기공학과)
  • Received : 2013.07.24
  • Accepted : 2013.08.09
  • Published : 2013.09.01

Abstract

The carbon nanowall (CNW) is a carbon-based nanomaterials and it was constructed with vertical structure graphenes and it has the highest surface density among carbon-based nanostructures. In this study, we have checked the growth properties of CNW according to the substrate angle. Microwave plasma enhanced chemical vapor deposition (PECVD) system was used to grow CNW on Si substrate with methane ($CH_4$) and hydrogen ($H_2$) gases. And, we have changed the substrate angle from $0^{\circ}$ to $90^{\circ}$ in steps of $30^{\circ}$. The planar and vertical conditions of the grown CNWs according to the substrate angle were characterized by a field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). In case of the growth angle increases, our experimental results showed that the length of the CNW was shortened and the content of carbon component was decreased.

Acknowledgement

Supported by : 한국연구재단

References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. Smalley, Nature, 318, 162 (1985). https://doi.org/10.1038/318162a0
  2. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  3. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  4. H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S. Y. Choi, Nano Lett., 10, 4381 (2010). https://doi.org/10.1021/nl101902k
  5. Y. H. Wu, P. W. Qioa, T. C. Chong, and Z. X. Shen, Adv. Mater., 14, 64 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1<64::AID-ADMA64>3.0.CO;2-G
  6. J. Robertson, Diam. Relat. Mater., 5, 797 (1996). https://doi.org/10.1016/0925-9635(95)00505-6
  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896