Effects of Low Level Water-soluble Pentosans, Alkaline-extractable Pentosans, and Xylanase on the Growth and Development of Broiler Chicks

  • Sheng, Q.K. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences) ;
  • Yang, L.Q. (Shandong Provincial Si Wei Chemical Safety Evaluation Center) ;
  • Zhao, H.B. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences) ;
  • Wang, X.L. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences) ;
  • Wang, K. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences)
  • Received : 2012.12.17
  • Accepted : 2013.06.03
  • Published : 2013.09.01


This study investigated the effects of low levels of water-soluble pentosans (WSP), alkaline-extractable pentosans (AEP), and xylanase on the growth and organ development of broiler chicks. Three hundred and fifty 1-d-old female broiler chicks were randomly allocated into seven experimental groups of five pen replicates, with ten chicks per replicate. The control group consumed a corn-soybean meal-based diet. Six dietary treatment groups consumed the basal diet supplemented with one of the following: WSP at 50 mg/kg (WSP50) or 100 mg/kg (WSP100); AEP at 50 mg/kg (AEP50) or 100 mg/kg (AEP100); or xylanase at 3 mg/kg (Xase3) or 6 mg/kg (Xase6). Data including the body weight, digestive organ weights, gut length, rectal digesta viscosity, and gut microflora and pH were collected on d 5, 10, and 15. When compared to the control group, WSP50 promoted body weight gain and organ growth throughout the study, calculated as 3-d averages (p<0.05). WSP100 increased weight gain and enhanced organ development (proventriculus, gizzard, and gut) on d 10 (p<0.05), but the 3-d averages were not different from the control group except for the weight of gizzard. Both Xase3 and Xase6 increased the 3-d average weight gain and the growth of the gizzard (p<0.05). WSP50 increased the digesta viscosity compared to Xase3 on d 10 and 15 (p<0.05). WSP50, Xase3, and Xase6 increased the concentration of Lactobacillus in the rectum when compared to the control group (p<0.05), but only Xase3 lowered the digesta pH in the ileum and cecum on d 10 and 15. AEP had minimal influence on the growth and organ development of broilers. The results showed that low levels of WSP, AEP, and xylanase had different effects and underlying mechanisms on the growth and organ development of broiler chicks. WSP50 could increase the growth performance of broilers fed a corn-soybean meal-based diet.




Supported by : National Natural Science Foundation of China


  1. Xue-Ling, Z., Z. Jie, and L. Li-Min. 2008. A study on effect of wheat bran pentosans on loosing the bowel to relieve constipation. Cereal Feed Ind. 8:14-16. (in Chinese).
  2. Mathlouthi, N., J. P. Lalles, P. Lepercq, C. Juste, and M. Larbier. 2002. Xylanase and $\beta$-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet. J. Anim. Sci. 80:2773-2779.
  3. Moura, P., S. Cabanas, P. Lourenco, F. Girio, M. C. Loureiro-Dias, and M. P. Esteves. 2008. In vitro fermentation of selected xylo-oligosaccharides by piglet intestinal microbiota. LWT - Food Sci. Technol. 41:1952-1961.
  4. Murphy, T. C., J. K. Mccracken, M. E. McCann, J. George, and M. R. Bedford. 2009. Broiler performance and in vivo viscosity as influenced by a range of xylanases, varying in ability to effect wheat in vitro viscosity. Br. Poult. Sci. 50:716-724.
  5. Park, J. and M. H. Floch. 2007. Prebiotics, probiotics, and dietary fiber in gastrointestinal disease. Gastroenterol. Clin. North Am. 36:47-63.
  6. Reddy, B. S., Y. Hirose, L. A. Cohen, B. Simi, I. Cooma, and C. V. Rao. 2000. Preventive potential of wheat bran fractions against experimental colon carcinogenesis: Implications for human colon cancer prevention. Cancer Res. 60:4792-4797.
  7. Redgwell, R. J., J.-H. de Michieli, M. Fischer, S. Reymond, P. Nicolas, and D. Sievert. 2001. Xylanase Induced Changes to Water- and Alkali-Extractable Arabinoxylans in Wheat Flour: Their Role in Lowering Batter Viscosity. J. Cereal Sci. 33:83-96.
  8. Rochell, S. J., T. J. Applegate, E. J. Kim, and W. A. Dozier III. 2012. Effects of diet type and ingredient composition on rate of passage and apparent ileal amino acid digestibility in broiler chicks. Poult. Sci. 91:1647-1653.
  9. Rumpagaporn, P., A. Kaur, O. H. Campanella, J. A. Patterson, and B. R. Hamaker. 2012. Heat and pH stability of alkali-extractable corn arabinoxylan and its xylanase-hydrolyzate and their viscosity behavior. J. Food Sci. 77:23-30.
  10. Shashidhara, R. G. and G. Devegowda. 2003. Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poult. Sci. 82:1319-1325.
  11. Shinnick, F. L., R. Mathews, and S. Ink. 1991. Serum cholesterol reduction by oats and other fiber sources. Cereal Foods World. 36:815-821.
  12. Sohail, M. U., A. Ijaz, M. S. Yousaf, K. Ashraf, H. Zaneb, M. Aleem, and H. Rehman. 2010. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult. Sci. 89:1934-1938.
  13. Topping, D. 2007. Cereal complex carbohydrate and their contribution to human health. J. Cereal Sci. 46:220-229.
  14. Van-Craeyveld, V., K. Swennen, E. Dornez, T. Van-de-Wiele, M. Marzorati, W. Verstraete, Y. Delaedt, O. Onagbesan, E. Decuypere, J. Buyse, B. De-Ketelaere, W. F. Broekaert, J. A. Delcour, and C. M. Courtin. 2008. Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J. Nutr. 138:2348-2355.
  15. Bao, Y. M. and M. Choct. 2010. Dietary NSP nutrition and intestinal immune system for broiler chickens. World's Poult. Sci. J. 66:511-518.
  16. Boguhn, J. and M. Rodehutscord. 2007. Effects of non-starch polysaccharide hydrolysing enzyme preparations in male and female turkeys fed wheat-based diets. Arch. Geflugelk. 4:152-161.
  17. Broekaert, W. F., C. M. Courtin, K. Verbeke, T. Van de Wiele, W. Verstraete, and J. A. Delcour. 2011. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 51:178-194.
  18. Choct, M. and G. Annison. 1990. Anti-nutritive activity of wheat pentosans in broiler diets. Br. Poult Sci. 31:811-821.
  19. Choct, M. and G. Annison. 1992. Anti-nutritive effect of wheat pentosans in broiler chickens: roles of viscosity and gut microflora. Br. Poult. Sci. 33:821-834.
  20. Courtin, C. M., W. F. Broekaert, K. Swennen, O. Lescroart, O. Onagbesan, J. Buyse, E. Decuypere, T. V. W. U. Gent, M. M. U. Gent, W. V. U. Gent, G. Huyghebaert, and J. A. Delcour. 2008. Dietary inclusion of wheat bran arabinoxyl-ooligosaccharides induces beneficial nutritional effects in chickens. Cereal Chem. 85: 607-613.
  21. Damen, B., J. Verspreet, A. Pollet, W. F. Broekaert, J. A. Delcour, and C. M. Courtin. 2011. Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Mol. Nutr. Food Res. 55:1862-1874.
  22. Dusel, G., H. Kluge, H. Jeroch, and O. Simon 1998. Xylanase supplementation of wheat-based rations for broilers: influence of wheat characteristics. J. Appl. Poult. Res.7:119-131.
  23. Duthie, G., L. Whyte, H. Chandran, S. Lawson, M. Velangi, and L. McCarthy. 2012. Introduction of sodium pentosan polysulfate and avoidance of urethral catheterisation: Improved outcomes in children with haemorrhagic cystitis post stem cell transplant/chemotherapy. J. Pediatr. Surg. 47:375-379.
  24. Anderson, J. W., A. E. Jones, and S. Riddell-Mason. 1994. Ten different dietary fibers have significantly different effects on serum and liver lipids of cholesterol-fed rats. J. Nutr. 1:78-83.
  25. Antoniou, T. and R. R. Marquardt. 1981. Influence of rye pentosans on the growth of chicks. Poult. Sci. 60:1898-1904.
  26. Francois, I. E., O. Lescroart, W. S. Veraverbeke, M. Marzorati, S. Possemiers, P. Evenepoe, H. Hamer, E. Houben, K. Windey, G. W. Welling, J. A. Delcour, C. M. Courtin, K. Verbeke, and W. F. Broekaert. 2012. Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br. J. Nutr. 108: 2229-22242.
  27. Ghoneum, M. and A. Jewett. 2000. Production of tumor necrosis factor-alpha and interferon-gamma from human peripheral blood lymphocytes by MGN-3, a modified arabinoxylan from rice bran, and its synergy with interleukin-2 in vitro. Cancer Detect. Prev. 24:314-324.
  28. Gonzalez-Alvarado, J. M., E. Jimenez-Moreno, D. G. Valencia, R. Lazaro, and G. G. Mateos. 2008. Effects of fiber source and heat processing of the cereal on the development and ph of the gastrointestinal tract of broilers fed diets based on corn or rice. Poult. Sci. 87:1779-1795.
  29. Gu, M., H. Ma, K. Mai, W. Zhang, N. Bai, and X. Wang. 2011. Effects of dietary-glucan, mannan oligosaccharide and their combinations on growth performance, immunity and resistance against Vibrio splendidus of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol. 31:303-309.
  30. Hashimoto, S., M. D. Shogren, L. C. Bolte, and Y. Pomeranz. 1987. Cereal pentosans: their estimation and significance. III. Pentosans in abraded grains and milling by-products. Cereal Chem. 64:39-41.
  31. Hee-Jeong, S., K. Hyung-Jun, C. Jeong-Hoon, K. Hyung-Tae, Y. Hyo-Seong, E. Su-Ju, L. Yea-Hyun, K. Hyo-Jeong, and K. Chang-Keun. 2012. Effects of arabinoxylan rice bran and exercise training on immune function and inflammation response in lipopolysaccharide-stimulated rats. J. Appl. Biol. Chem.55:41-46.
  32. Izydorczyk, M. S. and C. G. Biliaderis. 1995. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr. Polym. 28:33-48.
  33. Jimenez-Moreno, E., J. M. Gonzalez-Alvarado, D. Gonzalez-Sanchez, R. Lazaro, and G. G. Mateos. 2010. Effects of type and particle size of dietary fiber on growth performance and digestive traits of broilers from 1 to 21 days of age. Poult. Sci. 89:2197-2212.
  34. Kabel, M. A., L. Kortenoeven, H. A. Schols, and A. G. Voragen. 2002. In vitro fermentability of differently substituted xylo-oligosaccharides. J. Agric. Food Chem. 50:6205-6210.
  35. Kalmendal, R. and R. Tauson. 2012. Effects of a xylanase and protease, individually or in combination, and an ionophore coccidiostat on performance, nutrient utilization, and intestinal morphology in broiler chickens fed a wheat-soybean meal-based diet. Poult. Sci. 91:1387-1393.
  36. Lu, Z. X., P. R. Gibson, J. G. Muir, M. Fielding, and K. O'Dea. 2000a. Arabinoxylan fiber from a by-product of wheat flour processing behaves physiologically like a soluble, fermentable fiber in the large bowel of rats. J. Nutr. 130:1984-1990.
  37. Lu, Z. X., K. Z. Walker, J. G. Muir, T. Mascara, and K. O'Dea. 2000b. Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am. J. Clin. Nutr. 71:1123-1128.
  38. Maki, K. C., G. R. Gibson, R. S. Dickmann, C. W. Kendall, C. Y. Chen, A. Costabile, E. M. Comelli, D. L. McKay, N. G. Almeida, D. Jenkins, G. A. Zello, and J. B. Blumberg. 2012. Digestive and physiologic effects of a wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal. Nutrition 28:1115-1121.
  39. Mateos, G. G., E. Jimenez-Moreno, M. P. Serrano, and R. P. Lazaro. 2012. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res. 21:156-174.

Cited by

  1. The effects of xylanase on grower pig performance, concentrations of volatile fatty acids and peptide YY in portal and peripheral blood vol.12, pp.12, 2018,
  2. The effects of phytase and xylanase supplementation on performance and egg quality in laying hens vol.59, pp.5, 2018,