DOI QR코드

DOI QR Code

Effects of Low Level Water-soluble Pentosans, Alkaline-extractable Pentosans, and Xylanase on the Growth and Development of Broiler Chicks

  • Sheng, Q.K. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences) ;
  • Yang, L.Q. (Shandong Provincial Si Wei Chemical Safety Evaluation Center) ;
  • Zhao, H.B. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences) ;
  • Wang, X.L. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences) ;
  • Wang, K. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences)
  • Received : 2012.12.17
  • Accepted : 2013.06.03
  • Published : 2013.09.01

Abstract

This study investigated the effects of low levels of water-soluble pentosans (WSP), alkaline-extractable pentosans (AEP), and xylanase on the growth and organ development of broiler chicks. Three hundred and fifty 1-d-old female broiler chicks were randomly allocated into seven experimental groups of five pen replicates, with ten chicks per replicate. The control group consumed a corn-soybean meal-based diet. Six dietary treatment groups consumed the basal diet supplemented with one of the following: WSP at 50 mg/kg (WSP50) or 100 mg/kg (WSP100); AEP at 50 mg/kg (AEP50) or 100 mg/kg (AEP100); or xylanase at 3 mg/kg (Xase3) or 6 mg/kg (Xase6). Data including the body weight, digestive organ weights, gut length, rectal digesta viscosity, and gut microflora and pH were collected on d 5, 10, and 15. When compared to the control group, WSP50 promoted body weight gain and organ growth throughout the study, calculated as 3-d averages (p<0.05). WSP100 increased weight gain and enhanced organ development (proventriculus, gizzard, and gut) on d 10 (p<0.05), but the 3-d averages were not different from the control group except for the weight of gizzard. Both Xase3 and Xase6 increased the 3-d average weight gain and the growth of the gizzard (p<0.05). WSP50 increased the digesta viscosity compared to Xase3 on d 10 and 15 (p<0.05). WSP50, Xase3, and Xase6 increased the concentration of Lactobacillus in the rectum when compared to the control group (p<0.05), but only Xase3 lowered the digesta pH in the ileum and cecum on d 10 and 15. AEP had minimal influence on the growth and organ development of broilers. The results showed that low levels of WSP, AEP, and xylanase had different effects and underlying mechanisms on the growth and organ development of broiler chicks. WSP50 could increase the growth performance of broilers fed a corn-soybean meal-based diet.

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Anderson, J. W., A. E. Jones, and S. Riddell-Mason. 1994. Ten different dietary fibers have significantly different effects on serum and liver lipids of cholesterol-fed rats. J. Nutr. 1:78-83.
  2. Antoniou, T. and R. R. Marquardt. 1981. Influence of rye pentosans on the growth of chicks. Poult. Sci. 60:1898-1904. https://doi.org/10.3382/ps.0601898
  3. Bao, Y. M. and M. Choct. 2010. Dietary NSP nutrition and intestinal immune system for broiler chickens. World's Poult. Sci. J. 66:511-518. https://doi.org/10.1017/S0043933910000577
  4. Boguhn, J. and M. Rodehutscord. 2007. Effects of non-starch polysaccharide hydrolysing enzyme preparations in male and female turkeys fed wheat-based diets. Arch. Geflugelk. 4:152-161.
  5. Broekaert, W. F., C. M. Courtin, K. Verbeke, T. Van de Wiele, W. Verstraete, and J. A. Delcour. 2011. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 51:178-194. https://doi.org/10.1080/10408390903044768
  6. Choct, M. and G. Annison. 1990. Anti-nutritive activity of wheat pentosans in broiler diets. Br. Poult Sci. 31:811-821. https://doi.org/10.1080/00071669008417312
  7. Choct, M. and G. Annison. 1992. Anti-nutritive effect of wheat pentosans in broiler chickens: roles of viscosity and gut microflora. Br. Poult. Sci. 33:821-834. https://doi.org/10.1080/00071669208417524
  8. Courtin, C. M., W. F. Broekaert, K. Swennen, O. Lescroart, O. Onagbesan, J. Buyse, E. Decuypere, T. V. W. U. Gent, M. M. U. Gent, W. V. U. Gent, G. Huyghebaert, and J. A. Delcour. 2008. Dietary inclusion of wheat bran arabinoxyl-ooligosaccharides induces beneficial nutritional effects in chickens. Cereal Chem. 85: 607-613. https://doi.org/10.1094/CCHEM-85-5-0607
  9. Damen, B., J. Verspreet, A. Pollet, W. F. Broekaert, J. A. Delcour, and C. M. Courtin. 2011. Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Mol. Nutr. Food Res. 55:1862-1874. https://doi.org/10.1002/mnfr.201100377
  10. Dusel, G., H. Kluge, H. Jeroch, and O. Simon 1998. Xylanase supplementation of wheat-based rations for broilers: influence of wheat characteristics. J. Appl. Poult. Res.7:119-131. https://doi.org/10.1093/japr/7.2.119
  11. Duthie, G., L. Whyte, H. Chandran, S. Lawson, M. Velangi, and L. McCarthy. 2012. Introduction of sodium pentosan polysulfate and avoidance of urethral catheterisation: Improved outcomes in children with haemorrhagic cystitis post stem cell transplant/chemotherapy. J. Pediatr. Surg. 47:375-379. https://doi.org/10.1016/j.jpedsurg.2011.11.037
  12. Francois, I. E., O. Lescroart, W. S. Veraverbeke, M. Marzorati, S. Possemiers, P. Evenepoe, H. Hamer, E. Houben, K. Windey, G. W. Welling, J. A. Delcour, C. M. Courtin, K. Verbeke, and W. F. Broekaert. 2012. Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br. J. Nutr. 108: 2229-22242. https://doi.org/10.1017/S0007114512000372
  13. Ghoneum, M. and A. Jewett. 2000. Production of tumor necrosis factor-alpha and interferon-gamma from human peripheral blood lymphocytes by MGN-3, a modified arabinoxylan from rice bran, and its synergy with interleukin-2 in vitro. Cancer Detect. Prev. 24:314-324.
  14. Gonzalez-Alvarado, J. M., E. Jimenez-Moreno, D. G. Valencia, R. Lazaro, and G. G. Mateos. 2008. Effects of fiber source and heat processing of the cereal on the development and ph of the gastrointestinal tract of broilers fed diets based on corn or rice. Poult. Sci. 87:1779-1795. https://doi.org/10.3382/ps.2008-00070
  15. Gu, M., H. Ma, K. Mai, W. Zhang, N. Bai, and X. Wang. 2011. Effects of dietary-glucan, mannan oligosaccharide and their combinations on growth performance, immunity and resistance against Vibrio splendidus of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol. 31:303-309. https://doi.org/10.1016/j.fsi.2011.05.018
  16. Hashimoto, S., M. D. Shogren, L. C. Bolte, and Y. Pomeranz. 1987. Cereal pentosans: their estimation and significance. III. Pentosans in abraded grains and milling by-products. Cereal Chem. 64:39-41.
  17. Hee-Jeong, S., K. Hyung-Jun, C. Jeong-Hoon, K. Hyung-Tae, Y. Hyo-Seong, E. Su-Ju, L. Yea-Hyun, K. Hyo-Jeong, and K. Chang-Keun. 2012. Effects of arabinoxylan rice bran and exercise training on immune function and inflammation response in lipopolysaccharide-stimulated rats. J. Appl. Biol. Chem.55:41-46. https://doi.org/10.3839/jabc.2011.057
  18. Izydorczyk, M. S. and C. G. Biliaderis. 1995. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr. Polym. 28:33-48. https://doi.org/10.1016/0144-8617(95)00077-1
  19. Jimenez-Moreno, E., J. M. Gonzalez-Alvarado, D. Gonzalez-Sanchez, R. Lazaro, and G. G. Mateos. 2010. Effects of type and particle size of dietary fiber on growth performance and digestive traits of broilers from 1 to 21 days of age. Poult. Sci. 89:2197-2212. https://doi.org/10.3382/ps.2010-00771
  20. Kabel, M. A., L. Kortenoeven, H. A. Schols, and A. G. Voragen. 2002. In vitro fermentability of differently substituted xylo-oligosaccharides. J. Agric. Food Chem. 50:6205-6210. https://doi.org/10.1021/jf020220r
  21. Kalmendal, R. and R. Tauson. 2012. Effects of a xylanase and protease, individually or in combination, and an ionophore coccidiostat on performance, nutrient utilization, and intestinal morphology in broiler chickens fed a wheat-soybean meal-based diet. Poult. Sci. 91:1387-1393. https://doi.org/10.3382/ps.2011-02064
  22. Lu, Z. X., P. R. Gibson, J. G. Muir, M. Fielding, and K. O'Dea. 2000a. Arabinoxylan fiber from a by-product of wheat flour processing behaves physiologically like a soluble, fermentable fiber in the large bowel of rats. J. Nutr. 130:1984-1990.
  23. Lu, Z. X., K. Z. Walker, J. G. Muir, T. Mascara, and K. O'Dea. 2000b. Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am. J. Clin. Nutr. 71:1123-1128.
  24. Maki, K. C., G. R. Gibson, R. S. Dickmann, C. W. Kendall, C. Y. Chen, A. Costabile, E. M. Comelli, D. L. McKay, N. G. Almeida, D. Jenkins, G. A. Zello, and J. B. Blumberg. 2012. Digestive and physiologic effects of a wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal. Nutrition 28:1115-1121. https://doi.org/10.1016/j.nut.2012.02.010
  25. Mateos, G. G., E. Jimenez-Moreno, M. P. Serrano, and R. P. Lazaro. 2012. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res. 21:156-174. https://doi.org/10.3382/japr.2011-00477
  26. Mathlouthi, N., J. P. Lalles, P. Lepercq, C. Juste, and M. Larbier. 2002. Xylanase and $\beta$-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet. J. Anim. Sci. 80:2773-2779.
  27. Moura, P., S. Cabanas, P. Lourenco, F. Girio, M. C. Loureiro-Dias, and M. P. Esteves. 2008. In vitro fermentation of selected xylo-oligosaccharides by piglet intestinal microbiota. LWT - Food Sci. Technol. 41:1952-1961. https://doi.org/10.1016/j.lwt.2007.11.007
  28. Murphy, T. C., J. K. Mccracken, M. E. McCann, J. George, and M. R. Bedford. 2009. Broiler performance and in vivo viscosity as influenced by a range of xylanases, varying in ability to effect wheat in vitro viscosity. Br. Poult. Sci. 50:716-724. https://doi.org/10.1080/00071660903389950
  29. Park, J. and M. H. Floch. 2007. Prebiotics, probiotics, and dietary fiber in gastrointestinal disease. Gastroenterol. Clin. North Am. 36:47-63. https://doi.org/10.1016/j.gtc.2007.03.001
  30. Reddy, B. S., Y. Hirose, L. A. Cohen, B. Simi, I. Cooma, and C. V. Rao. 2000. Preventive potential of wheat bran fractions against experimental colon carcinogenesis: Implications for human colon cancer prevention. Cancer Res. 60:4792-4797.
  31. Redgwell, R. J., J.-H. de Michieli, M. Fischer, S. Reymond, P. Nicolas, and D. Sievert. 2001. Xylanase Induced Changes to Water- and Alkali-Extractable Arabinoxylans in Wheat Flour: Their Role in Lowering Batter Viscosity. J. Cereal Sci. 33:83-96. https://doi.org/10.1006/jcrs.2000.0345
  32. Rochell, S. J., T. J. Applegate, E. J. Kim, and W. A. Dozier III. 2012. Effects of diet type and ingredient composition on rate of passage and apparent ileal amino acid digestibility in broiler chicks. Poult. Sci. 91:1647-1653. https://doi.org/10.3382/ps.2012-02173
  33. Rumpagaporn, P., A. Kaur, O. H. Campanella, J. A. Patterson, and B. R. Hamaker. 2012. Heat and pH stability of alkali-extractable corn arabinoxylan and its xylanase-hydrolyzate and their viscosity behavior. J. Food Sci. 77:23-30. https://doi.org/10.1111/j.1750-3841.2011.02482.x
  34. Shashidhara, R. G. and G. Devegowda. 2003. Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poult. Sci. 82:1319-1325. https://doi.org/10.1093/ps/82.8.1319
  35. Shinnick, F. L., R. Mathews, and S. Ink. 1991. Serum cholesterol reduction by oats and other fiber sources. Cereal Foods World. 36:815-821.
  36. Sohail, M. U., A. Ijaz, M. S. Yousaf, K. Ashraf, H. Zaneb, M. Aleem, and H. Rehman. 2010. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult. Sci. 89:1934-1938. https://doi.org/10.3382/ps.2010-00751
  37. Topping, D. 2007. Cereal complex carbohydrate and their contribution to human health. J. Cereal Sci. 46:220-229. https://doi.org/10.1016/j.jcs.2007.06.004
  38. Van-Craeyveld, V., K. Swennen, E. Dornez, T. Van-de-Wiele, M. Marzorati, W. Verstraete, Y. Delaedt, O. Onagbesan, E. Decuypere, J. Buyse, B. De-Ketelaere, W. F. Broekaert, J. A. Delcour, and C. M. Courtin. 2008. Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J. Nutr. 138:2348-2355. https://doi.org/10.3945/jn.108.094367
  39. Xue-Ling, Z., Z. Jie, and L. Li-Min. 2008. A study on effect of wheat bran pentosans on loosing the bowel to relieve constipation. Cereal Feed Ind. 8:14-16. (in Chinese).

Cited by

  1. The effects of xylanase on grower pig performance, concentrations of volatile fatty acids and peptide YY in portal and peripheral blood vol.12, pp.12, 2018, https://doi.org/10.1017/S1751731118000277
  2. The effects of phytase and xylanase supplementation on performance and egg quality in laying hens vol.59, pp.5, 2018, https://doi.org/10.1080/00071668.2018.1483575