Changes in Microbial Diversity, Methanogenesis and Fermentation Characteristics in the Rumen in Response to Medicinal Plant Extracts

  • Kim, Eun Tae (Division of Applied Life Science, Graduate School of Gyeongsang National University (Institute of Agriculture and Life Science)) ;
  • Moon, Yea Hwang (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Min, Kwan-Sik (Animal Biotechnology, GSBIT, Hankyong National University) ;
  • Kim, Chang-Hyun (Department of Animal Life and Environment Science, Hankyong National University) ;
  • Kim, Sam Churl (Division of Applied Life Science, Graduate School of Gyeongsang National University (Institute of Agriculture and Life Science)) ;
  • Ahn, Seung Kyu (Sancheong Oriental Medicinal Herb Institute) ;
  • Lee, Sung Sill (Division of Applied Life Science, Graduate School of Gyeongsang National University (Institute of Agriculture and Life Science))
  • Received : 2013.01.29
  • Accepted : 2013.06.13
  • Published : 2013.09.01


This study evaluated the in vitro effect of medicinal plant extracts on ruminal methanogenesis, four different groups of methanogens and ruminal fermentation characteristics. A fistulated Holstein cow was used as a donor of rumen fluid. Licorice and mugwort extracts (Glycyrrhiza uralensis and Artemisia capillaris, 0.5% and 1% of total substrate DM, respectively), previously used as folk remedies, were added to an in vitro fermentation incubated with buffered-rumen fluid. Total gas production in Glycyrrhiza uralensis extract treatment was not significantly different between treatments (p<0.05) while total gas production in the Artemisia capillaris extract treatment was lower than that of the control. Artemisia capillaris extract and Glycyrrhiza uralensis extract reduced $CH_4$ emission by 14% (p<0.05) and 8% (p<0.05), respectively. Ciliate-associated methanogens population decreased by 18% in the medicinal plant extracts treatments. Medicinal plant extracts also affected the order Methanobacteriales community. Methanobacteriales diversity decreased by 35% in the Glycyrrhiza uralensis extract treatment and 30% in the Artemisia capillaris extract treatment. The order Methanomicrobiales population decreased by 50% in the 0.5% of Glycyrrhiza uralensis extract treatment. These findings demonstrate that medicinal plant extracts have the potential to inhibit in vitro ruminal methanogenesis.


  1. Crutzen, P. J. 1995. The role of methane in atmospheric chemistry and climate. In: Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction (Ed. W. V. Engelhardt, S. Leonhard-Marek, G. Breves, and D. Giesecke). Ferdinand Enke Verlag, Stuttgart, Germany, pp. 291-315.
  2. Davidson, P. M. and A. S. Naidu. 2000. Phyto-phenols. In: Natural Food Antimicrobial Systems (Ed. A. S. Naidu). CRC Press, Boca Raton, FL, USA, pp. 265-293.
  3. Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582.
  4. Denman, S. E., N. W. Tomkins, and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322.
  5. Erwin, E. S., G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771.
  6. Gibbs, M. J., L. Lewis, and J. S. Hoffman. 1989. Reducing methane emissions from livestock: Opportunities and issues. U.S. Environmental Protection Agency, Washington, DC, USA.
  7. Greathead, H. 2003. Plants and plant extracts for improving animal productivity. Proc. Nutr. Soc. 62:279-290.
  8. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Animal Sci. 73:2483-2492.
  9. Kim, E. T., K. -S. Min, C. -H. Kim, Y. H. Moon, S. C. Kim, and S. S. Lee. 2013. The effect of plant extracts on in-vitro ruminal fermentation, methanogenesis and methane-related microbes in the rumen. Asian-Aust. J. Anim. Sci. 26:517-522.
  10. Kim, E. T., C. -H. Kim, K. -S. Min, and S. S. Lee. 2012. Effects of plant extracts on microbial population, methane emission and ruminal fermentation characteristics in in vitro. Asian-Aust. J. Anim. Sci. 25:806-811.
  11. Behlke, E. J. 2007. Attenuation of ruminal methanogenesis. Theses and Dissertations in Animal Science, University of Nebraska-Lincoln, USA.
  12. Chalupa, W. 1988. Manipulation of rumen fermentation. In: Recent Developments in Ruminant Nutrition 2 (Ed. H. Haresign and D. J. A. Cole). Butterworths, UK, pp. 1-18.
  13. Yu, Y., C. Lee, J. Kim, and S. Hwang. 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89:670-679.
  14. Teferedegne, B. 2000. New perspective on the use of tropical plants to improve ruminant nutrition. Proc. Nutr. Soc. 59:209-214.
  15. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197.
  16. Kim, S. C., A. T. Adesogan, H. J. Shin, M. D. Lee, and Y. D. Ko. 2006. The effects of increasing the level of dietary wormwood (Artemisia montana Pampan) on intake, digestibility, N balance and ruminal fermentation characteristics in sheep. Livest. Sci. 100:261-269.
  17. Ko, Y. D., J. H. Kim, A. T. Adesogan, H. M. Ha, and S. C. Kim. 2006. The effect of replacing rice straw with dry wormwood (Artemisia sp.) on intake, digestibility, nitrogen balance and ruminal fermentation characteristics in sheep. Anim. Feed Sci. Technol. 125:99-110.
  18. Luton, P. E., J. M. Wayne, R. J. Sharp, and P. W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521-3530.
  19. Martin, S. A., M. N. Streeter, D. J. Nisbet, G. M. Hill, and S. E. Williams. 1999. Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. J. Anim. Sci. 77:1008-1015.
  20. McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109.
  21. McGuffey, R. K., L. F. Richardson, and J. I. D. Wilkinson. 2001. Ionophore for dairy cattle: current status and future outlook. J. Dairy Sci. 84:E194-E203.
  22. Medlin, L., H. J. Elwood, S. Stickel, and H. L. Sogin. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491-499.
  23. Moon, Y. H. and I. C. Jung. 2011. Physicochemical properties and sensory score of Hanwoo beef loin after feeding with mugwort. J. Korean Soc. Food Sci. Nutr. 40:731-737.
  24. Moon, Y. H., S. J. Yang, and I. C. Jung. 2011. Effect of feeding mugwort (Artemisia capillaris) TMR fodder on nutritional composition of Hanwoo beef. J. Life Sci. 21:568-575.
  25. Patra, A. K., D. N. Kamra, and N. Agarwal. 2006. Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol. 128:276-291.
  26. Patra, A. K., D. N. Kamra, and N. Agarwal. 2006. Effect of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test. Int. Cong. Ser. 1293:176-179.
  27. Patra, A. K., D. N. Kamra, and N. Agarwal. 2010. Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J. Sci. Food Agric. 90:511-520.
  28. Russell, J. B. and A. J. Houlihan. 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol. Rev. 27:65-74.
  29. Sarker, M. S. K., S. Y. Ko, S. M. Lee, G. M. Kim, J. K. Choi, and C. J. Yang. 2010. Effect of different feed additives on growth performance and blood profiles of Korean Hanwoo calves. Asian-Aust. J. Anim. Sci. 23:52-60.
  30. SAS. 2002. SAS user's guide: Statistics. SAS Inst. Inc., Cary, NC, USA.

Cited by

  1. Effects of Herbal Medicine By-products on Ruminal In vitro Degradability, In situ Disappearance, and Effective Degradability vol.48, pp.2, 2014,