Effects of Methylcellulose on Cellulolytic Bacteria Attachment and Rice Straw Degradation in the In vitro Rumen Fermentation

  • Sung, Ha Guyn (Department of Animal Science and Technology, Sangji University) ;
  • Kim, Min Ji (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Upadhaya, Santi Devi (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Ha, Jong K. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Sung Sill (Division of Applied Life Science and IALS, Gyeongsang National University)
  • Received : 2013.04.16
  • Accepted : 2013.06.17
  • Published : 2013.09.01


An in vitro experiment was conducted to evaluate the effect of methylcellulose on the attachment of major cellulolytic bacteria on rice straw and its digestibility. Rice straw was incubated with ruminal mixture with or without 0.1% methylcellulose (MC). The attachment of F. succinogenes, R. flavefaciens and R. albus populations on rice straw was measured using real-time PCR with specific primer sets. Methylcellulose at the level of 0.1% decreased the attachment of all three major cellulolytic bacteria. In particular, MC treatment reduced (p<0.05) attachment of F. succinogenes on rice straw after 10 min of incubation while a significant reduction (p<0.05) in attachment was not observed until 4 h incubation in the case of R. flavefaciens and R. albus. This result indicated F. succinogenes responded to MC more sensitively and earlier than R. flavefaciens and R. albus. Dry matter digestibility of rice straw was subsequently inhibited by 0.1% MC, and there was a significant difference between control and MC treatment (p<0.05). Incubated cultures containing MC had higher pH and lower gas production than controls. Current data clearly indicated that the attachment of F. succinogenes, R. flavefaciens and R. albus on rice straw was inhibited by MC, which apparently reduced rice straw digestion.


Supported by : Rural Development Administration


  1. Bhat, S., R. J. Wallace, and E. R. Orskov. 1990. Adhesion of cellulolytic ruminal bacteria to barley straw. Appl. Environ. Microbiol. 56:2698-2703.
  2. Cheng, K. -J., C. S. Stewart, D. Dinsdale, and J. W. Costerton. 1983. Electron microscopy of bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol. 10:93-120.
  3. Craig, W. M., G. A. Broderick, and D. B. Ricker. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J. Nutr. 117:56-62.
  4. Czerkawski, J. W. 1986. Degradation of solid feeds in the rumen: spatial distribution of microbial activity and its consequences. In Control of Digestion and Metabolism in Ruminants. Proceedings of the Sixth International Symposium on Ruminant Physiology, Banff, Canada, pp. 158-172 (Ed. L. P. Milligan, W. L. Grovum, and A. Dobson). Englewood Cliffs, New Jersey: Prentice Hall.
  5. Dinsdale, D., E. J. Morris, and J. S. D. Bacon. 1978. Electron microscopy of the microbial populations present and their modes of attach on various cellulosic substrates undergoing digestion in the sheep rumen. Appl. Environ. Microbiol. 36:160-168.
  6. Forsberg, C. W., E. Forano, and A. Chesson. 2000. Microbial adherence to the plant cell wall and enzymatic hydrolysis. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. pp. 79-97. (Ed. P. B. Cronje). Wallingford: CABI Publishing.
  7. Gong, J. and C. W. Forsberg. 1989. Factors affecting adhesion of Fibrobacter succinogenes S85 and adherence defective mutants to cellulose. Appl. Environ. Microbiol. 55:3039-3044.
  8. Hwang, I. H., C. H. Lee, S. W. Kim, H. G. Sung, S. Y. Lee, S. S. Lee, H. Hong, Y. -C. Kwan, and J. K. Ha. 2008. Effects of mixtures of Tween80 and cellulolytic enzymes on nutrient digestion and cellulolytic bacterial adhesion. Asian-Aust. J. Anim. Sci. 21:1604-1609.
  9. Koike, S. and Y. Kobayshi. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366.
  10. Kudo, H., K. -J. Cheng, and J. W. Costerton. 1987. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can. J. Microbiol. 33:267-272.
  11. Lee, S. S., J. K. Ha, and K. -J. Cheng. 2000. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl. Environ. Microbiol. 66:3807-3813.
  12. McAllister, T. A., H. D. Bae, G. A. Jones, and K. -J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018.
  13. McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109.
  14. Michalet-Doreau, B., I. Fernandez, C. Peyron, L. Millet, and G. Fonty. 2001. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reprod. Nutr. Dev. 41:187-194.
  15. Minato, H., A. Endo, Y. Ootome, and T. Uemura. 1966. Ecological treatise on the rumen fermentation. II. The amylolytic and cellulolytic activities of fractionated bacterial portions attached to the rumen solids. J. Gen. Appl. Microbiol. 12:53-61.
  16. Minato, H. and T. Suto. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. J. Gen. Appl. Microbiol. 24:1-16.
  17. Minato, H. and T. Suto. 1979. Technique for fractionation of bacteria in the rumen microbial ecosystem. III. Attachment of bacteria isolated from bovine rumen to starch granules in vitro and elution of bacteria attached therefrom. J. Gen. Appl. Microbiol. 25:71-78.
  18. Minato, H., M. Mitsumori, and K. -J. Cheng. 1993. Attachment of microorganisms to solid substrates in the rumen. Pages 139-145 in Proc. MIE Bioforum on Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Institut Pasteur, Paris, France.
  19. Miron, J. and C. W. Forsberg. 1998. Features of Fibrobacter intestinalis DR7 mutant which is impaired with its ability to adhere to cellulose. Anaerobe 4:35-43.
  20. Miron, J. and C. I. Forsberg. 1999. Characterization of cellulose binding proteins which are involved in adhesion mechanism of Fibrobacter intestinalis DR7. Appl. Microbiol. Biotechnol. 51:491-497.
  21. Miron, J., D. Ben-Ghedalia, and M. Morrison. 2001. Invited Review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84:1294-1309.
  22. Morris, E. J. and O. J. Cole. 1987. Relationships between cellulolytic activity and adhesion to cellulose in Ruminococus albus. J. Gen. Microbiol. 133:1023-1032.
  23. Pell, A. N. and P. Schofield. 1993. Microbial adhesion and degradation of plant cell walls. Pages 397-423 in Forage Cell Wall Structure and Digestibility (Ed. R. D. Hatfield, H. G. Jung, J. Ralph, D. R. Buxton, D. R. Mertens, and P. J. Weimer). ASA-CSSA-SSSA, Madison, WI.
  24. Purdy, K. J., T. M. Embley, S. Takii, and D. B. Nedwell. 1996. Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-colum method. Appl. Environ. Microbial. 62:3905-3970.
  25. Rasmussen, M. A., B. A. White, and R. B. Hespell. 1989. Improved assay for quantitating adherence of ruminal bacteria to cellulose. Appl. Environ. Microbiol. 55:2089-2091.
  26. Rasmussen, M. A., R. B. Hespell, B. A. White, and R. J. Bothast. 1988. Inhibitory effects of methylcellulose on cellulose degradation by Ruminococcus flavefaciens. Appl. Environ. Microbiol. 54:890-897.
  27. Reddy, S. K. K. and M. Morrison. 1998. Biochemical and molecular characterization of adherence-defective mutants of Ruminococcus albus strain 8. Page 132 in Proc. MIE Bioforum on Cellulose Degradation, Institut Pasteur, Paris, France.
  28. Statistical Analysis System Institute. 1996. SAS/STATTM User's Guide: Statistics, Version 7, 5th Edition. Cary, NC.
  29. Stewart, C. S., S. H. Duncan, and H. J. Flint. 1990. The properties of forms of Ruminococcus flavefaciens which differ in their ability to degrade cotton cellulose. FEMS Microbiol. Lett. 72:47-50.
  30. Sung, H. G., Y. Kobayashi, J. Chang, A. Ha, I. H. Hwang, and J. K. Ha. 2007. Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian-Aust. J. Anim. Sci. 20:200-207.
  31. Trabalza-Marinucci, M., C. Poncet, E. Delval, and G. Fonty. 2006. Evaluation of techniques to detach particle-associated microorganisms from rumen contents. Anim. Feed Sci. Technol. 125:1-16.
  32. White, B. A., M. A. Rasumussen, and R. M. Gardner. 1988. Methylcellulose inhibition of Exo-$\beta$-1,4-Glucanase A from Ruminicoccus flavefaciens FD-1. Appl. Environ. Microbiol. 54:1634-1636.
  33. Williams, A. G. and N. H. Strachan. 1984. Polysaccharide degrading enzymes in microbial populations from the liquid and solid fractions of bovine rumen digesta. Can. J. Anim. Sci. 64:58-59.

Cited by

  1. The Effect of Select Personal Care Ingredients and Simple Formulations on the Attachment of Bacteria on Polystyrene vol.5, pp.3, 2018,