Habitat Connectivity Assessment of Tits Using a Statistical Modeling: Focused on Biotop Map of Seoul, South Korea

통계모형을 활용한 박새류의 서식지 연결성 평가: 서울시 도시생태현황도 자료를 중심으로

  • 송원경 (수원시정연구원) ;
  • 김은영 (한국환경정책.평가연구원) ;
  • 이동근 (서울대학교 조경.지역시스템공학부)
  • Received : 2013.04.11
  • Accepted : 2013.05.02
  • Published : 2013.06.30


Species distribution modeling is one of the most effective habitat analysis methods for wildlife conservation. This study was for evaluating the suitability of species distribution to distance between forest patches in Seoul city using tits. We analyzed the distribution of the four species of tits: varied tit (Parus varius), marsh tit (P. palustris), great tit (P. major) and coal tit (P. ater), using the landscape indexes and connectivity indexes, and compared the resulting suitability indexes from 100m to 1,000m. As factors affecting to the distribution of tits, we calculated landscape indices by separating them into intra-patch indices (i.e. logged patch area (PA), area-weighted mean patch shape index (PSI), tree rate (TR)) and inter-patch indices (i.e. patch degree (PD), patch betweenness (PB), difference probability of connectivity (DPC)), to analyze the internal properties of the patches and their connectivity by tits occurrence data using logistic regression modeling. The models were evaluated by AICc (Akaike Information Criteria with a correction for finite sample sizes) and AUC (Area Under Curve of ROC). The results of AICc and AUC showed DPC, PA, PSI, and TR were important factors of the habitat models for great tit and marsh tit at the level of distance 500~800m. In contrast, habitat models for coal tit and varied tit, which are known as forest interior species, reflected PA, PSI, and TR as intra-patch indices rather than connectivity. These mean that coal tit and varied tit are more likely to find a large circular forest patch than a small and long-shaped forest patch, which are higher rate of forest. Therefore, different strategies are required in order to enhance the habitats of the forest birds, tits, in a region that has fragmented forest patches such as Seoul city. It is important to manage forest interior areas for coal tit and varied tit, which are known as forest interior species and to manage not only forest interior areas but also connectivity of the forest patches in the threshold distance for great tit and marsh tit as adapted species to the urban ecosystem for sustainable ecosystem management.


Supported by : 환경부


  1. 강완모, 박찬열, 2011, 그래프 이론을 적용한 서울시 녹지 연결망의 정량적 분석, 한국환경생태학회지, 25(3), 412-420.
  2. 곽정인, 이경재, 한봉호, 2010, 도시 녹지축 주변 시가화지역 내 야생조류 출현 영향요인 분석 연구, 한국환경생태학회지, 24(2), 166-177.
  3. 박찬열, 2011, 번식기 박새류와 곤충과 식물의 상호작용 네트워크, 서울대학교 대학원 박사학위논문.
  4. 서울특별시, 2010, 2010 도시생태현황도 정비제작 -2차년도-, 서울특별시.
  5. 송원경, 김은영, 이동근, 2012, 이질적 경관에서의 연결성 측정: 리뷰 및 적용, 환경영향평가, 21(3), 391-407.
  6. 원병오, 1981, 한국동식물도감 동물편(조류 생태), 서울: 문교부, 1126.
  7. 이우신, 구태회, 박진영(2000) 야외원색도감 한국의 새. 서울: LG상록재단. pp. 250-253.
  8. 이우신, 박찬열, 임신재, 허위행, 정옥식, 최창용, 박용수, 이은재, 2010, 야생동물생태관리학, 서울: 라이프사이언스, 331.
  9. 임신재, 손승훈, 김규중, 2011, 활엽수림에 설치한 인공새집을 이용한 박새류 번식 생태, 한국임학회지, 100(3), 397-401.
  10. 임신재, 손승훈, 김민진, 강정훈, 2008, 침엽수림과 활엽수림 지역에서 박새류의 인공새집 이용, 한국임학회지, 97(1), 83-87.
  11. 홍석환, 곽정인, 2011, 한국산 박새과 조류의 도시림 식생유형별 출현 특성, 한국환경생태학회지, 25(5), 760-766.
  12. Amano, T., Y. Kusumoto, Y. Tokuoka, S. Yamada, E.-Y. Kim, S. Yamamoto, 2008, Spatial and temporal variations in the use of rice-paddy dominated landscapes by birds in Japan, Biological Conservation, 141(6), 1704-1716.
  13. Andreu, J., E. Barba, 2006, Breeding dispersal of Great Tits Parus major in a homogeneous habitat: effects of sex, age, and mating status, ARDEA, 94(1), 45-58.
  14. Angold, P. G., J. P. Sadler, M. O. Hill, A. Pullin, S. Rushton, K. Austin, E. Small, B. Wood, R. Wadsworth, R. Sanderson, K. Thompson, 2006, Biodiversity in urban habitat patches. The Science of the total environment, 360, 196-204.
  15. Brotons, L., W. Thuiller, M. B. Araujo, A. H. Hirzel, 2004, Presence-absence versus presence-only modelling methods for predicting bird habitat suitability, Ecography, 27, 437-448.
  16. Bunn, A. G., D. L. Urban, T. H. Keitt, 2000, Landscape connectivity: A conservation application of graph theory, Journal of environmental management, 59(4), 265-278.
  17. Collinge, S. K., T. M. Palmer, 2002, The influences of patch shape and boundary contrast on insect response to fragmentation in California grasslands, Landscape Ecology, 17, 647-656.
  18. Dhondt, A. A., 1979, Summer Dispersal and Survival of Juvenile Great Tits in Southern Sweden, Oecologia, 42, 139-157.
  19. Dingemanse, N. J., C. Both, A. J. van Noordwijk, A. L. Rutten, P. J. Drent, 2003, Natal dispersal and personalities in great tits (Parus major). Proceedings, Biological sciences / The Royal Society, 270(1516), 741-7.
  20. Ferraz, G., J. D. Nichols, J. E. Hines, P. C. Stouffer, R. O. Bierregaard, Jr., T. E. Lovejoy, 2007, A large-scale deforestation experiment: effects of patch area and isolation on Amazon birds, Science, 315, 238-241.
  21. Forman, R. T. T., 1995, Some general principles of landscape and regional ecology, Landscape Ecology, 10(3), 133-142.
  22. Forman R. T. T., M. Godron, 1986, Landscape ecology, New York: John Wiley & Sons.
  23. Freeman, L. C., 1979, Centrality in Social Networks Conceptual Clarification, Social Networks, 1, 215-239.
  24. Hanski, I., 1998, Metapopulation dynamics, Nature, 396, 41-49.
  25. Hanski, I., 1999, Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes, Oikos, 87(2), 209-219.
  26. Jordan, F., A. Baldi, K.-M. Orci, I. Racz, Z. Varga, 2003, Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation, Landscape Ecology, 18, 83-92.
  27. Krebs, C. J., 1972, Ecology: the experimental analysis of distribution and abundance, Harper & Row, New York
  28. Levins, R., 1969, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bull. Entom. Soc. Amer., 15, 237-240.
  29. Luque, S., S. Saura, M.-J. Fortin, 2012, Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data, Landscape Ecology, 27(2), 153-157.
  30. Matthysen, E., T. Van de Casteele, F. Adriaensen, 2005, Do sibling tits (Parus major, P. caeruleus) disperse over similar distances and in similar directions? Oecologia, 143(2), 301-7.
  31. Minor, E. S., D. L. Urban, 2007, Graph theory as a proxy for spatially explicit population models in conservation planning, Ecological Applications, 17(6), 1771-1782.
  32. R Development Core Team, 2012, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria.
  33. Saura, S., L. Pascual-Hortal, 2007, A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study, Landscape and Urban Planning, 83(2-3), 91-103.
  34. Taylor, P. D., L. Fahrig, K. Henein, G. Merriam, 1993, Connectivity is a element of landscape structure, Oikos 68(3), 571-573.
  35. Tischendorf, L., L. Fahrig, 2000, How should we measure landscape connectivity? Landscape Ecology, 15, 633-641.
  36. Turner, M. G., 1989, Landscape ecology: the effect of pattern on process. Annual review of ecology and systematics, Vol. 20, 171-197.
  37. Turner, M. G., 2005, Landscape ecology: What is the state of the science? Annu. Rev. Ecol. Evol. Syst., 36, 319-344.
  38. Verhulst, S., C. M. Perrins, R. Riddington, 1997, Natal dispersal of great tits in a patchy environment, Ecology, 78(3), 864-872.[0864:NDOGTI]2.0.CO;2

Cited by

  1. Applying Connectivity Analysis for Prioritizing Unexecuted Urban Parks in Sungnam vol.17, pp.3, 2014,
  2. Analysis of Bird Species Diversity Response to Structural Conditions of Urban Park - Focused on 26 Urban Parks in Cheonan City - vol.18, pp.3, 2015,