DOI QR코드

DOI QR Code

DC and Impulse Insulation Characteristics of PPLP for HTS DC Cable

고온초전도 직류 케이블용 절연재료인 PPLP의 직류 및 임펄스 절연 특성

  • Kim, Woo-Jin (Department of Electrical Engineering, Gyeongsang National University and ERI) ;
  • Pang, Man-Sik (Department of Electrical Engineering, Gyeongsang National University and ERI) ;
  • Kim, Hae-Jong (Korea Electrotechnology Research Institute, Superconductivity Center) ;
  • Cho, Jeon-Wook (Korea Electrotechnology Research Institute, Superconductivity Center) ;
  • Kim, Sang-Hyun (Department of Electrical Engineering, Gyeongsang National University and ERI)
  • 김우진 (경상대학교 전기공학과 및 공학연구원) ;
  • 방만식 (경상대학교 전기공학과 및 공학연구원) ;
  • 김해종 (한국전기연구원 초전도연구센터) ;
  • 조전욱 (한국전기연구원 초전도연구센터) ;
  • 김상현 (경상대학교 전기공학과 및 공학연구원)
  • Received : 2013.06.11
  • Accepted : 2013.06.14
  • Published : 2013.07.01

Abstract

To realize the high-Tc superconducting (HTS) DC cable system, it is important to study not only high current capacity and low loss of conductor but also optimum electrical insulation at cryogenic temperature. A model HTS DC cable system consists of a HTS conductor, semi-conductor, cooling system and insulating materials. Polypropylene laminated paper (PPLP) has been widely adopted as insulating material for HTS machines. However, the fundamental insulation characteristics of PPLP for the development of HTS DC cable have not been revealed satisfactorily until now. In this paper, we will discuss mainly on the breakdown characteristics of 3 sheets PPLP in liquid nitrogen ($LN_2$). The characteristics of the diameter, location of butt-gap, distance between butt-gap length, pressure effect, polarity effect under DC and impulse voltage were studied. Also, the DC polarity reversal breakdown voltage of mini-model cable was measured in $LN_2$ under 0.4 MPa.

Acknowledgement

Supported by : 한국전기연구원

References

  1. A. Badel, P. Tixador, and P. Dedie, IEEE Trans. Appl. Supercon., 21, 1375 (2011). https://doi.org/10.1109/TASC.2010.2090321
  2. J. Kozak, M. Majka, S. Kozak, and T. Janowski, IEEE Trans. Appl. Supercon., 22, 5601804 (2012). https://doi.org/10.1109/TASC.2011.2178977
  3. A. Lapthorn, P. S. Bodger, and W. Enright, IEEE Trans. Power Del., 28, 253 (2013). https://doi.org/10.1109/TPWRD.2012.2226479
  4. S. Mukoyama, M. Yagi, T. Yonemura, T. Nomura, N. Fujiwara, Y. Ichikawa, Y. Aoki, T. Saitoh, N. Amemiya, A. Ishiyama, and N. Hayakawa, IEEE Trans. Appl. Supercon., 21, 976 (2011). https://doi.org/10.1109/TASC.2011.2117411
  5. J. F. Maguire, J. Yuan, W. Romanosky, F. Schmidt, R. Soika, S. Bratt, F. Durand, C. King, J. McNamara, and T. E. Welsh, IEEE Trans. Appl. Supercon., 21, 961 (2011). https://doi.org/10.1109/TASC.2010.2093108
  6. M. Nagao, M. Kurimoto, R. Takahashi, T. Kawashima., Y. Murakami, T. Nishimura, Y. Ashibe, and T. Masuda, IEEE Conference on Electrical Insulation and Dielectric Phenomena Annual Report (IEEE, Cancun, Mexico, 2011) p. 419.
  7. M. Hazeyama, T. Kobayashi, N. Hayakawa, S. Honjo, T. Masuda, and H. Okubo, IEEE Trans. Dielectr. Electr. Insul., 9, 6 939 (2002).
  8. K. Tsuyuki, S. Washida, O. Tanda, T. Masuda, K. Kato, T. Nakajima, and S. Mukoyama, Cryogenic Engineering of Japan, 35, 350 (2000). https://doi.org/10.2221/jcsj.35.350
  9. W. J. Kim, H. J. Kim, J. W. Cho, S. Hwangbo, and S. H. Kim, Superconductivity and Cryogenics, 14, 32 (2012).