Na Borosilicate Glass Surface Structures: A Classical Molecular Dynamics Simulations Study

소듐붕규산염 유리의 표면 구조에 대한 분자 동역학 시뮬레이션 연구

  • Received : 2013.06.10
  • Accepted : 2013.06.24
  • Published : 2013.06.30


Borosilicate glass dissolution is an important chemical process that impacts the glass durability as nuclear waste form that may be used for high-level radioactive waste disposal. Experiments reported that the glass dissolution rates are strongly dependent on the bulk composition. Because some relationship exists between glass composition and molecular-structure distribution (e.g., non-bridging oxygen content of $SiO_4$ unit and averaged coordination number of B), the composition-dependent dissolution rates are attributed to the bulk structural changes corresponding to the compositional variation. We examined Na borosilicate glass structures by performing classical molecular dynamics (MD) simulations for four different chemical compositions ($xNa_2O{\cdot}B_2O_3{\cdot}ySiO_2$). Our MD simulations demonstrate that glass surfaces have significantly different chemical compositions and structures from the bulk glasses. Because glass surfaces forming an interface with solution are most likely the first dissolution-reaction occurring areas, the current MD result simply that composition-dependent glass dissolution behaviors should be understood by surface structural change upon the chemical composition change.


borosilicate glass;nuclear waste management;molecular dynamics simulations;glass surface structure;composition-dependent glass dissolution


  1. Kieu, L.H., Delaye, J.M., Cormier, L., and Stolz, C. (2011) Development of empirical potentials for sodium borosilicate glass systems. Journal of Non-Crystalline Solids, 357, 3313-3321.
  2. Lutze, W. (1988) Silicate glasses in: Lutze, W., Ewing, R.C. (Eds.), Radioactive Wasteform for the Future. North Holland, Amsterdam, pp. 1-192.
  3. Mozzi, R.L. and Warren, B.E. (1969) Structure of vitreous silica. Journal of Applied Crystallography, 2, 164-172.
  4. Pedone, A. (2009) Properties Calculations of Silica-Based Glasses by Atomistic Simulations Techniques: A Review. Journal of Physical Chemistry C, 113, 20773-20784.
  5. Pierce, E.M., Reed, L.R., Shaw, W.J., McGrail, B.P., Icenhower, J.P., Windisch, C.F., Cordova, E.A., and Broady, J. (2010) Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline ($NaAlSiO_4$)-malinkoite ($NaBSiO_4$) join. Geochimica et Cosmochimica Acta, 74, 2634-2654.
  6. Plimpton, S. (1995) Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117, 1-19.
  7. Tilocca, A. (2010) Sodium migration pathways in multi-component silicate glasses: Car-Parrinello molecular dynamics simulations. Journal of Chemical Physics, 133, 014701.
  8. Tilocca, A. and Cormack, A.N. (2009) Surface Signatures of Bioactivity: MD Simulations of 45S and 65S Silicate Glasses. Langmuir, 26, 545-551.
  9. Windisch, C.F., Pierce, E.M., Burton, S.D., and Bovaird, C.C. (2011) Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses. Journal of Non-Crystalline Solids, 357, 2170-2177.
  10. Yun, Y.H. and Bray, P.J. (1978) Nuclear magnetic-resonance studies of glasses in system $Na_2O-B_2O_3-SiO_2$. Journal of Non-Crystalline Solids, 27, 363-380.
  11. Dell, W.J., Bray, P.J., and Xiao, S.Z. (1983) $^{11}BNMR$-studies and structural modeling of $Na_2O-B_2O_3-SiO_2$ glasses of high soda content. Journal of Non-Crystalline Solids, 58, 1-16.
  12. Downs, R.T., Yang, H., Hazen, R.M., Finger, L.W., and Prewitt, C.T. (1999) Compressibility mechanisms of alkali feldspars: New data from reedmergnerite. American Mineralogist, 84, 333-340.
  13. Du L.S. and Stebbins J.F. (2005) Network connectivity in aluminoborosilicate glasses: A high-resolution $^{11}B$, $^{27}Al$ and $^{17}O$ NMR study. Journal of Non-Crystalline Solids, 351, 3508-3520.
  14. Effenberger, H., Lengauer, C.L., and Parthe, E. (2001) Trigonal $B_2O_3$ with higher space-group symmetry: Restuls of are evaluation. Monatshefte fur Chemie, 132, 1515-1517.
  15. Feuston, B.P. and Garofalini, S.H. (1989) Topological and bonding defects in vitreous silica surfaces. Journal of Chemical Physics, 91, 564-570.
  16. Frenkel, D. and Smit, B. (2002) Understanding Molecular Simulation: From Algorithms to Applications (2nd ed.). Academic, SanDiego, CA.
  17. Frugier, P., Gin, S., Minet, Y., Chave, T., Bonin, B., Godon, N., Lartigue, J.E., Jollivet, P., Ayral, A., De Windt, L., and Santarini, G. (2008) SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model. Journal of Nuclear Materials, 380, 8-21.
  18. Gin, S., Ribet, I., and Couillard, M. (2001) Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions. Journal of Nuclear Materials 298, 1-10.
  19. Grambow, B. and Muller, R. (2001) First-order dissolution rate law and the role of surface layers in glass performance assessment. Journal of Nuclear Materials, 298, 112-124.
  20. Grimley, D.I., Wright, A.C., and Sinclair, R.N. (1990) Neutron scattering from vitreous silica. Journal of Non-Crystalline Solids, 119, 49-64.
  21. Guillot, B. and Sator, N. (2007) A computer simulation study of natural silicate melts. Part I: Low pressure properties. Geochimica et Cosmochimica Acta, 71, 1249-1265.
  22. Harrison, M.T., Dunnett, B.F., Morgan, S., Scales, C.R., and Small, J.S. (2009) International research on vitrified HLW long-term behaviour: state of the art. National Nuclear Laboratory, (09) 8864.
  23. Hockney, R.W. and Eastwood, J.W. (1988) Computer Simulation Using Particles. Taylor & Francis, New York, NY.
  24. IAEA (1997) Characterization of radioactive waste forms and packages.
  25. Iseghem, P.V. (2012) Corrosion issues of radioactive waste packages in geological disposal systems, in: Feron, D. (Ed.), Nucelar Corrosion Science and Technology. Woodhead Publishing Limited, Cambridge, UK, pp. 939-987.
  26. Jallot, E., Benhayoune, H., Kilian, L., Josset, Y., and Balossier, G. (2001) An original method to assess short-term physicochemical reactions at the periphery of bioactive glass particles in biological fluids. Langmuir, 17, 4467-4470.
  27. Afify, N.D. and Mountjoy, G. (2009) Molecular-dynamics modeling of $Eu^{3+}$-ion clustering in $SiO_2$ glass. Physical Review B, 79, 024202.
  28. Cailleteau, C., Angeli, F., Devreux, F., Gin, S., Jestin, J., Jollivet, P., and Spalla, O. (2008) Insight into silicate-glass corrosion mechanisms. Nature Materials, 7, 978-983.
  29. Criscenti, L.J., Schultz, P.A., Steefel, C., Zapol, P., and Bourg, I. (2011) Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution. Sandia Report, SAND 2011-8250.
  30. Cygan, R.T. and Kubicki, J.D. (2001) Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry, Vol. 42, Mineralogical Society of America, Washington, DC, p. 531.

Cited by

  1. Development of effective empirical potentials for molecular dynamics simulations of the structures and properties of boroaluminosilicate glasses vol.453, 2016,
  2. First-Principles Study of Hydrolysis Reaction Barriers in a Sodium Borosilicate Glass vol.4, pp.4, 2013,
  3. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy vol.7, 2014,
  4. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations vol.5, pp.4, 2014,
  5. Surface structures of sodium borosilicate glasses from molecular dynamics simulations vol.100, pp.6, 2017,
  6. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations vol.148, pp.2, 2018,