Oncogenesis and the Clinical Significance of K-ras in Pancreatic Adenocarcinoma

  • Huang, Chun (Department of General Surgery, Three Gorges Medical College) ;
  • Wang, Wei-Min (Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University) ;
  • Gong, Jian-Ping (Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University) ;
  • Yang, Kang (Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University)
  • Published : 2013.05.30


The RAS family genes encode small GTP-binding cytoplasmic proteins. Activated KRAS engages multiple effector pathways, notably the RAF-mitogen-activated protein kinase, phosphoinositide-3-kinase (PI3K) and RalGDS pathways. In the clinical field, K-ras oncogene activation is frequently found in human cancers and thus may serve as a potential diagnostic marker for cancer cells in circulation. This mini-review aims to summarise information on Ras-induced oncogenesis and the clinical significance of K-ras.


  1. Abou-Alfa GK, Chapman PB, Feilchenfeldt J, et al (2011). Targeting mutated K-ras in pancreatic adenocarcinoma using an adjuvant vaccine. Am J Clin Oncol, 34, 321-5.
  2. Appleman VA, Ahronian LG, Cai J, Klimstra DS, Lewis BC (2012). KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling. Mol Cancer Res, 10, 1228-39.
  3. Bodemann BO, White MA (2008). Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nat Rev Cancer, 8, 133-40.
  4. Calhoun ES, Jones JB, Ashfaq R, et al (2003). BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol, 163, 1255-60.
  5. Chen H, Tu H, Meng ZQ, et al (2010). K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. Eur J Surg Oncol, 36, 657-62.
  6. Guan J, Chen J (2012). [Mutant K-ras gene in pathogenesis of pancreatic ductal adenocarcinoma]. Zhonghua Bing Li Xue Za Zhi, 41, 62-5.
  7. Gui S, Yuan G, Wang L, et al (2013). Wnt3a regulates proliferation, apoptosis and function of pancreatic NIT-1 beta cells via activation of IRS2/PI3K signaling. J Cell Biochem, 9, 47-52.
  8. Hanlon L, Avila JL, Demarest RM, et al (2010). Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res, 70, 4280-6.
  9. Ji Z, Mei FC, Xie J, Cheng X (2007). Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem, 282, 14048-55.
  10. Kennedy AL, Adams PD, Morton JP (2011). Ras, PI3K/Akt and senescence: Paradoxes provide clues for pancreatic cancer therapy. Small GTPases, 2, 264-7.
  11. Koorstra JB, Hustinx SR, Offerhaus GJ, Maitra A (2008). Pancreatic carcinogenesis. Pancreatology, 8, 110-25.
  12. Lisiansky V, Naumov I, Shapira S, et al (2012). Gene therapy of pancreatic cancer targeting the K-Ras oncogene. Cancer Gene Ther, 19, 862-9.
  13. Mizuno O, Kawamoto H, Yamamoto N, et al (2010). Singlepattern convergence of K-ras mutation correlates with surgical indication of intraductal papillary mucinous neoplasms. Pancreas, 39, 617-21.
  14. Prasad R, Vaid M, Katiyar SK (2012). Grape proanthocyanidin inhibit pancreatic cancer cell growth in vitro and in vivo through induction of apoptosis and by targeting the PI3K/ Akt pathway. PLoS One, 7, e43064.
  15. Rogosnitzky M, Danks R (2010). Validation of blood testing for K-ras mutations in colorectal and pancreatic cancer. Anticancer Res, 30, 2943-7.
  16. Schonleben F, Qiu W, Allendorf JD, Chabot JA, Remotti HE, Su GH (2009). Molecular analysis of PIK3CA, BRAF, and RAS oncogenes in periampullary and ampullary adenomas and carcinomas. J Gastrointest Surg, 13, 1510-6.
  17. Schonleben F, Qiu W, Remotti HE, Hohenberger W, Su GH (2008). PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas. Langenbecks Arch Surg, 393, 289-96.
  18. Schultz NA, Roslind A, Christensen IJ, et al (2012). Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas. Pancreas, 41, 759-66.
  19. Stanger BZ, Stiles B, Lauwers GY, et al (2005). Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell, 8, 185-95.
  20. Sui X, Shin S, Zhang R, et al (2009). Hdm2 is regulated by K-Ras and mediates p53-independent functions in pancreatic cancer cells. Oncogene, 28 ,709-20.
  21. Talar-Wojnarowska R, Pazurek M, Durko L, et al (2012). A comparative analysis of K-ras mutation and carcinoembryonic antigen in pancreatic cyst fluid. Pancreatology, 12, 417-20.
  22. Vigil D, Martin TD, Williams F, et al (2010). Aberrant overexpression of the Rgl2 Ral small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through Ral-dependent and Ral-independent mechanisms. J Biol Chem, 285, 34729-40.
  23. Vivanco I, Sawyers CL (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2, 489-501.

Cited by

  1. Co-amplification at Lower Denaturation-temperature PCR Combined with Unlabled-probe High-resolution Melting to Detect KRAS Codon 12 and 13 Mutations in Plasma-circulating DNA of Pancreatic Adenocarcinoma Cases vol.15, pp.24, 2015,