Enhanced Antitumor Effect of Curcumin Liposomes with Local Hyperthermia in the LL/2 Model

  • Tang, Jian-Cai (State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University) ;
  • Shi, Hua-Shan (State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University) ;
  • Wan, Li-Qiang (State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University) ;
  • Wang, Yong-Sheng (Department of Thoracic Oncology, West China Hospital, West China Medical School, Sichuan University) ;
  • Wei, Yu-Quan (State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University)
  • 발행 : 2013.04.30


Curcumin previously was proven to inhibit angiogenesis and display potent antitumor activity in vivo and in vitro. In the present study, we investigated whether a combination curcumin with hyperthermia would have a synergistic antitumor effect in the LL/2 model. The results indicated that combination therapy significantly inhibited cell proliferation of MS-1 and LL/2 in vitro. LL/2 experiment model also demonstrated that the combination therapy inhibited tumor growth and prolonged the life span in vivo. Furthermore, combination therapy reduced angiogenesis and increased tumor apoptosis. Our findings suggest that the combination therapy exerted synergistic antitumor effects, providing a new perspective fpr clinical tumor therapy.


연구 과제 주관 기관 : National Natural Science


  1. Arbiser JL, Klauber N, Rohan R, et al (1998). Curcumin is an in vivo inhibitor of angiogenesis. Mol Med, 4, 376-78.
  2. Bergers G, Benjamin LE (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 3, 401-10.
  3. Bhandarkar SS, Arbiser JL (2007). Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol, 595, 185-95.
  4. Bhattacharyya S, Hossain DMS, Mohanty S, et al (2010). Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell Mol Immunol, 7, 306-15.
  5. Bhattacharyya S, Mandal D, Saha B, et al (2007). Curcumin prevents tumor-induced T cell apoptosis through Stat-5amediated Bcl-2 induction. J Biol Chem, 282, 15954-64.
  6. Calderwood SK, Theriault JR, Gong J (2005). Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol, 35, 2518-27.
  7. Chen P, Yang L, Yang H, et al (2008). Synergistic antitumor effect of CXCL10 with hyperthermia. J Cancer Res Clin, 134, 679-87.
  8. Cheng AL, Hsu CH, Lin JK, et al (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with highrisk or pre-malignant lesions. Anticancer Res, 21, 2895-990.
  9. Dayanc BE, Beachy SH, Ostberg JR, et al (2008). Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperther, 24, 41-56.
  10. Dhillon N, Aggarwal BB, Newman RA, et al (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res, 14, 4491-9.
  11. Folkman J (1992). The role of angiogenesis in tumor growth. Semin Cancer Biol, 3, 65-71
  12. Folkman J (2002). Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 29, 15-8.
  13. Gasparini G, Longo R, Toi M, et al (2005). Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol, 2, 562-77.
  14. Goel A, Kunnumakkara AB, Aggarwal BB (2008). Curcumin as " Curecumin": From kitchen to clinic. Biochem Pharmacol, 75, 787-809.
  15. Granci V, Dupertuis YM, Pichard C (2010). Angiogenesis as a potential target of pharmaconutrients in cancer therapy. Curr Opin Clin Nutr, 13, 417-22.
  16. Gururaj AE, Belakavadi M, Venkatesh DA, et al (2002). Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun, 297, 934-42.
  17. Hildebrandt B, Wust P, Ahlers O, et al (2002). The cellular and molecular basis of hyperthermia. Crit Rev Oncol, 43, 33-56.
  18. Huang Q, Hu JK, Lohr F, et al (2000). Heat-induced gene expression as a novel targeted cancer gene therapy strategy. Cancer Res, 60, 3435-39.
  19. Karunagaran D, Rashmi R, Kumar T (2005). Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Tar, 5, 117-29.
  20. Liu JY, Wei YQ, Yang L, et al (2003). Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood, 102, 1815-23.
  21. Ma J, Chen CS, Blute T, Waxman DJ (2011). Antiangiogenesis enhances intratumoral drug retention. Cancer Res, 71, 2675-85.
  22. Manjili M, Wang XY, Park J, et al (2002). Cancer immunotherapy: stress proteins and hyperthermia. Int J Hyperther, 18, 506-20.
  23. Moyer HR, Delman KA (2008). The role of hyperthermia in optimizing tumor response to regional therapy. Int J Hyperther, 24, 251-61.
  24. Pajonk F, van Ophoven A, McBride WH (2005). Hyperthermiainduced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res, 65, 4836-43.
  25. Roca C, Primo L, Valdembri D, et al (2003). Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res, 63, 1500-07.
  26. Sawaji Y, Sato T, Takeuchi A, et al (2002). Anti-angiogenic action of hyperthermia by suppressing gene expression and production of tumour-derived vascular endothelial growth factor in vivo and in vitro. Brit J Cancer, 86, 1597-603.
  27. Stankiewicz A, Livingstone A, Mohseni N, et al (2009). Regulation of heat-induced apoptosis by Mcl-1 degradation and its inhibition by Hsp70. Cell Death Differ, 16, 638-47.
  28. Wei YQ, Wang QR, Zhao X, et al (2000). Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med, 6, 1160-66.
  29. Zetter P, Bruce R (1998). Angiogenesis and tumor metastasis. Annu Rev Med, 49, 407-24.
  30. Zhang HG, Mehta K, Cohen P, et al (2008). Hyperthermia on immune regulation: a temperature's story. Cancer Lett, 271, 191-204.

피인용 문헌

  1. Luteolin-loaded Phytosomes Sensitize Human Breast Carcinoma MDA-MB 231 Cells to Doxorubicin by Suppressing Nrf2 Mediated Signalling vol.15, pp.13, 2014,
  2. Targeting Cancer with Nano-Bullets: Curcumin, EGCG, Resveratrol and Quercetin on Flying Carpets vol.15, pp.9, 2014,
  3. Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer vol.3, pp.1, 2015,
  4. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art vol.24, pp.4, 2016,