DOI QR코드

DOI QR Code

Enhanced Antitumor Effect of Curcumin Liposomes with Local Hyperthermia in the LL/2 Model

  • Tang, Jian-Cai (State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University) ;
  • Shi, Hua-Shan (State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University) ;
  • Wan, Li-Qiang (State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University) ;
  • Wang, Yong-Sheng (Department of Thoracic Oncology, West China Hospital, West China Medical School, Sichuan University) ;
  • Wei, Yu-Quan (State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University)
  • Published : 2013.04.30

Abstract

Curcumin previously was proven to inhibit angiogenesis and display potent antitumor activity in vivo and in vitro. In the present study, we investigated whether a combination curcumin with hyperthermia would have a synergistic antitumor effect in the LL/2 model. The results indicated that combination therapy significantly inhibited cell proliferation of MS-1 and LL/2 in vitro. LL/2 experiment model also demonstrated that the combination therapy inhibited tumor growth and prolonged the life span in vivo. Furthermore, combination therapy reduced angiogenesis and increased tumor apoptosis. Our findings suggest that the combination therapy exerted synergistic antitumor effects, providing a new perspective fpr clinical tumor therapy.

Acknowledgement

Supported by : National Natural Science

References

  1. Arbiser JL, Klauber N, Rohan R, et al (1998). Curcumin is an in vivo inhibitor of angiogenesis. Mol Med, 4, 376-78.
  2. Bergers G, Benjamin LE (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 3, 401-10. https://doi.org/10.1038/nrc1093
  3. Bhandarkar SS, Arbiser JL (2007). Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol, 595, 185-95. https://doi.org/10.1007/978-0-387-46401-5_7
  4. Bhattacharyya S, Hossain DMS, Mohanty S, et al (2010). Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell Mol Immunol, 7, 306-15. https://doi.org/10.1038/cmi.2010.11
  5. Bhattacharyya S, Mandal D, Saha B, et al (2007). Curcumin prevents tumor-induced T cell apoptosis through Stat-5amediated Bcl-2 induction. J Biol Chem, 282, 15954-64. https://doi.org/10.1074/jbc.M608189200
  6. Calderwood SK, Theriault JR, Gong J (2005). Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol, 35, 2518-27. https://doi.org/10.1002/eji.200535002
  7. Chen P, Yang L, Yang H, et al (2008). Synergistic antitumor effect of CXCL10 with hyperthermia. J Cancer Res Clin, 134, 679-87. https://doi.org/10.1007/s00432-007-0337-3
  8. Cheng AL, Hsu CH, Lin JK, et al (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with highrisk or pre-malignant lesions. Anticancer Res, 21, 2895-990.
  9. Dayanc BE, Beachy SH, Ostberg JR, et al (2008). Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperther, 24, 41-56. https://doi.org/10.1080/02656730701858297
  10. Dhillon N, Aggarwal BB, Newman RA, et al (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res, 14, 4491-9. https://doi.org/10.1158/1078-0432.CCR-08-0024
  11. Folkman J (1992). The role of angiogenesis in tumor growth. Semin Cancer Biol, 3, 65-71
  12. Folkman J (2002). Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 29, 15-8.
  13. Gasparini G, Longo R, Toi M, et al (2005). Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol, 2, 562-77.
  14. Goel A, Kunnumakkara AB, Aggarwal BB (2008). Curcumin as " Curecumin": From kitchen to clinic. Biochem Pharmacol, 75, 787-809. https://doi.org/10.1016/j.bcp.2007.08.016
  15. Granci V, Dupertuis YM, Pichard C (2010). Angiogenesis as a potential target of pharmaconutrients in cancer therapy. Curr Opin Clin Nutr, 13, 417-22. https://doi.org/10.1097/MCO.0b013e3283392656
  16. Gururaj AE, Belakavadi M, Venkatesh DA, et al (2002). Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun, 297, 934-42. https://doi.org/10.1016/S0006-291X(02)02306-9
  17. Hildebrandt B, Wust P, Ahlers O, et al (2002). The cellular and molecular basis of hyperthermia. Crit Rev Oncol, 43, 33-56. https://doi.org/10.1016/S1040-8428(01)00179-2
  18. Huang Q, Hu JK, Lohr F, et al (2000). Heat-induced gene expression as a novel targeted cancer gene therapy strategy. Cancer Res, 60, 3435-39.
  19. Karunagaran D, Rashmi R, Kumar T (2005). Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Tar, 5, 117-29. https://doi.org/10.2174/1568009053202081
  20. Liu JY, Wei YQ, Yang L, et al (2003). Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood, 102, 1815-23. https://doi.org/10.1182/blood-2002-12-3772
  21. Ma J, Chen CS, Blute T, Waxman DJ (2011). Antiangiogenesis enhances intratumoral drug retention. Cancer Res, 71, 2675-85. https://doi.org/10.1158/0008-5472.CAN-10-3242
  22. Manjili M, Wang XY, Park J, et al (2002). Cancer immunotherapy: stress proteins and hyperthermia. Int J Hyperther, 18, 506-20. https://doi.org/10.1080/02656730110116696
  23. Moyer HR, Delman KA (2008). The role of hyperthermia in optimizing tumor response to regional therapy. Int J Hyperther, 24, 251-61. https://doi.org/10.1080/02656730701772480
  24. Pajonk F, van Ophoven A, McBride WH (2005). Hyperthermiainduced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res, 65, 4836-43. https://doi.org/10.1158/0008-5472.CAN-03-2749
  25. Roca C, Primo L, Valdembri D, et al (2003). Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res, 63, 1500-07.
  26. Sawaji Y, Sato T, Takeuchi A, et al (2002). Anti-angiogenic action of hyperthermia by suppressing gene expression and production of tumour-derived vascular endothelial growth factor in vivo and in vitro. Brit J Cancer, 86, 1597-603. https://doi.org/10.1038/sj.bjc.6600268
  27. Stankiewicz A, Livingstone A, Mohseni N, et al (2009). Regulation of heat-induced apoptosis by Mcl-1 degradation and its inhibition by Hsp70. Cell Death Differ, 16, 638-47. https://doi.org/10.1038/cdd.2008.189
  28. Wei YQ, Wang QR, Zhao X, et al (2000). Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med, 6, 1160-66. https://doi.org/10.1038/80506
  29. Zetter P, Bruce R (1998). Angiogenesis and tumor metastasis. Annu Rev Med, 49, 407-24. https://doi.org/10.1146/annurev.med.49.1.407
  30. Zhang HG, Mehta K, Cohen P, et al (2008). Hyperthermia on immune regulation: a temperature's story. Cancer Lett, 271, 191-204. https://doi.org/10.1016/j.canlet.2008.05.026

Cited by

  1. Luteolin-loaded Phytosomes Sensitize Human Breast Carcinoma MDA-MB 231 Cells to Doxorubicin by Suppressing Nrf2 Mediated Signalling vol.15, pp.13, 2014, https://doi.org/10.7314/APJCP.2014.15.13.5311
  2. Targeting Cancer with Nano-Bullets: Curcumin, EGCG, Resveratrol and Quercetin on Flying Carpets vol.15, pp.9, 2014, https://doi.org/10.7314/APJCP.2014.15.9.3865
  3. Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer vol.3, pp.1, 2015, https://doi.org/10.1039/C4BM00272E
  4. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art vol.24, pp.4, 2016, https://doi.org/10.3109/1061186X.2015.1055570