Selection of Acid-tolerant and Hetero-fermentative Lactic Acid Bacteria Producing Non-proteinaceous Anti-bacterial Substances for Kimchi Fermentation

비단백질성 항균물질을 생산하는 김치발효용 내산성 Hetero 발효형 유산균주 선발

  • Kim, Hye-Rim (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
  • 김혜림 (경기대학교 식품생물공학과) ;
  • 이종훈 (경기대학교 식품생물공학과)
  • Received : 2012.11.20
  • Accepted : 2012.12.22
  • Published : 2013.03.28


Twenty-three strains of Leuconostoc species and 45 strains of Weissella species inhibiting the growth of Lactobacillus sakei, one of the most populous lactic acid bacteria in over-ripened kimchi, were isolated from kimchi in our previous study. Among these hetero-fermentative 68 strains, Leuconostoc mesenteroides CK0128, Weissella cibaria CK0633, and W. cibaria KK0797 exhibited a relatively high survival rate in MRS medium, which was adjusted to pH 4.3 using an acid mixture consisting of acetic and lactic acids, and produced a large amount of exopolysaccharides. The culture supernatants of 3 strains were fractionated by a molecular weight cutter and lyophilized. The fractions with a molecular weight smaller than 3,000 Da showed antagonistic activity against Staphylococcus aureus and Lb. sakei. The anti-bacterial substances were very stable to heat treatments ($121^{\circ}C$, 15 min) and active at acidic conditions below pH 5. ${\alpha}$-Amylase, lipase, and proteolytic enzymes (proteinase K and pepsin) did not affect their activities. These non-proteinaceous anti-bacterial substances inhibited the growth of several food pathogens.


Leuconostoc;Weissella;Lactobacillus sakei;kimchi;acid-tolerance;anti-bacterial substance


  1. Alp, G. and B. Aslim. 2010. Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of Bifidobacterium spp. isolated from infants feces and breast milk. Anaerobe 16: 101-105.
  2. Boke, H., B. Aslim, and G. Alp. 2010. The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS) produced by yogurt starter bacteria. Arch. Biol. Sci. 62: 323-328.
  3. Byun, M. W., B. S. Cha, J. H. Kwon, H. O. Cho, and W. J. Kim. 1989. The combined effect of heat treatment and irradiation on the inactivation of major lactic aicd bacteria associated with Kimchi fermentation. Korean J. Food Sci. Technol. 21: 109-119
  4. Chang, J. Y., H. J. Lee, and H. C. Chang. 2007. Identification of the agent from Lactobacillus plantarum KFRI464 that enhances bacteriocin production by Leuconostoc citreum GJ7. J. Appl. Microbiol. 103: 2504-2515.
  5. Chang, J. Y., I. C. Kim, and H. C. Chang. 2011. Effect of solar salt on the fermentation characteristics of kimchi. Korean J. Food. Preserv. 18: 256-265.
  6. Cho, J., D. Lee, C. Yang, J. Jeon, J. Kim, and H. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262-267.
  7. Cho, S. J. and H. D. Yun. 2005. Identification and molecular characterization of three isoforms of iturin produced by endophytic Bacillus sp. CY22. J. Life Sci. 15: 1005-1012.
  8. Cho, Y. and H. Rhee. 1991. Effect of lactic acid bacteria and temperature on kimchi fermentation (II). Korean J. Soc. Food Sci. 7: 89-95.
  9. Cleveland, J., T. J. Montville, I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20.
  10. Eom, H. J., D. M. Seo, and N. S. Han. 2007. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 117: 61-67.
  11. Gänzle, M. G., A. Höltzel, J. Walter, G. Jung, and W. P. Hammes. 2000. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol. 66: 4325-4333.
  12. Grill, J. P., C. Manginot-Dürr, F. Schneider, and J. Ballongue. 1995. Bifidobacteria and probiotic effects: action of Bifidobacterium species on conjugated bile salts. Curr. Microbiol. 31: 23-27.
  13. Ha, D. and D. Cha. 1994. Novel starter culture for kimchi, using bacteriocin-producing Enterococcus faecium strain. Korean J. Appl. Microbiol. Biotechnol. 22: 550-556.
  14. Jin, H. S., J. B. Kim, Y. J. Yun, and K. J. Lee. 2008. Selection of kimchi starters based on the microbial composition of kimchi and their effects. J. Korean Soc. Food Sci. Nutr. 37: 671-675.
  15. Jung, J. Y., S. H. Lee, J. M. Kim, M. S. Park, J. W. Bae, Y. Hahn, E. L. Madsen, and C. O. Jeon. 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Mcrobiol. 77: 2264-2274.
  16. Kandler, O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49: 209-224.
  17. Kang, S., W. Yang, Y. Kim, E. Joung, and Y. Han. 1995. Strain improvement of Leuconostoc mesenteroides for Kimchi fermentation and effect of starter. Korean J. Appl. Microbiol. Biotechnol. 23: 461-471.
  18. Kim, D. H., K. R. Kang, H. W. Kim, S. Y. Yoon, C. G. Kim, T. Yamaguchi, J. K. Sohng, and J. S. Kang. 2010. Structure determination of macrolactin compounds with antibacterial activities isolated from Bacillus polyfermenticus KJS-2. J. Life Sci. 20: 1792-1800.
  19. Kim, D.-H. and Y. S. Hahn. 2003. Effect of addition of ethanol and organic acids on the quality of Mul-kimchi. J. East Asian Soc. Dietary Life 13: 305-312.
  20. Kim, D. J. and S. Y. Lee. 2001. Isolation of the exopolysaccharide producing Enterobacter sp. and physicochemical properties of the polysaccharide produced by this strain. Korean J. Biotechnol. Bioeng. 16: 370-375.
  21. Kim, H. J. and H. C. Chang. 2006. Isolation and characterization of the exopolysaccharide-producing lactic acid bacteria from kimchi. Korean J. Microbiol. Biotechnol. 34: 196-203.
  22. Kim, S. 2001. Difficulty in Korean kimchi industry for modernization. Food Indus. Nutr. 6: 34-37.
  23. Kim, Y. C., E. Y. Jung, E. H. Kim, D. H. Jung, T. B. Choe, T. J. Kwon, and S. M. Kang. 1998. Acid tolerance of the acid resistant mutant of Leuconostoc paramesenteroides improved for kimchi starter. Korean J. Appl. Microbiol. Biotechnol. 26: 275-282.
  24. Kim, Y. C., E. Y. Jung, H. J. Kim, D. H. Jung, S. G. Hong, T. J. Kwon, and S. M. Kang. 1999. Improvement of kimchi fermentation by using acid-tolerant mutant of Leuconostoc mesenteroides and aromatic yeast Saccharomyces fermentati as starters. J. Microbiol. Biotechnol. 9: 22-31.
  25. Kim, Y. H., H. Z. Kim, J. Y. Kim, T. B. Choi, and S. M. Kang. 2005. Strain improvement of Leuconostoc mesenteroides as a acid-resistant mutant and effect on Kimchi fermentation as a starter. Korean J. Appl. Microbiol. Biotechnol. 33: 41-50.
  26. Kumar, C. G. and S. K. Anand. 1998. Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol. 42: 9-27.
  27. Lee, C., C. Ko, and D. Ha. 1992. Microfloral changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Korean J. Appl. Microbiol. Biotechnol. 20: 102-109.
  28. Lee, J. H. 2009. Current studies on the community of lactic acid bacteria in kimchi, a traditional korean fermented food. Milk Sci. 58: 153-159.
  29. Lee, K. and J. H. Lee. 2011. Isolation of Leuconostoc and Weissella species inhibiting the growth of Lactobacillus sakei from kimchi. Korean J. Microbiol. Biotechnol. 39: 175-181.
  30. Lee, K. and Y. Lee. 2010. Effect of Lactobacillus plantarum as a starter on the food quality and microbiota of kimchi. Food Sci. Biotechnol. 19: 641-646.
  31. Lee, M. and J. H. Lee. 2009. Detection of pediococci in kimchi using pediococci selective medium. Korean J. Microbiol. Biotechnol. 37: 238-242.
  32. Lee, M., K. H. Cho, and J. H. Lee. 2010. Application of 16S rDNA PCR-RFLP analysis for the rapid identification of Weissella species. Korean J. Microbiol. Biotechnol. 38: 455-460.
  33. Looijesteijn, P. J., L. Trapet, E. de Vries, T. Abee, and J. Hugenholtz. 2001. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64: 71-80.
  34. Mheen, T. I. and T. W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450.
  35. Moon, G. S., C. H. Kang, Y. R. Pyun, and W. J. Kim. 2004. Isolation, identification, and characterization of a bacteriocin-producing Enterococcus sp. from kimchi and its application to kimchi fermentation. J. Microbiol. Biotechnol. 14: 924-931.
  36. Niku-Paavola, M. L., A. Laitila, T. Mattila-Sandholm, and A. Haikara. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 86: 29-35.
  37. Park, H., Y. Kim, and S. Yoon. 1994. The effect of blanching and lactic acid bacterial inoculation on the quality of kimchi. Korean J. Soc. Food Sci. 9: 61-66.
  38. Park, I. K., S. H. Kim, and S. D. Kim. 1996. Effect of organic acids addition during salting on the fermentation of Kimchi. J. East Asian Soc. Dietary Life 6: 195-204.
  39. Park, K. J. and S. J. Woo. 1988. Effect of Na-acetate, Namalate and K-sorbate on the pH, acidity and sourness during Kimchi fermentation. Korean J. Food Sci. Technol. 20: 40-44.
  40. Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12: 163-171.
  41. Shim, S. and J. H. Lee. 2008. Evaluation of lactic acid bacterial community in kimchi using terminal-restriction fragment length polymorphism analysis. Korean J. Microbiol. Biotechnol. 36: 247-259.
  42. So, M., M. Shin, and Y. Kim. 1996. Effects of psychrotrophic lactic acid bacterial starter on kimchi fermentation. Korean J. Food Sci. Technol. 28: 806-813.
  43. Talarico, T., I. Casas, T. C. Chung, and W. Dobrogosz. 1988. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 32: 1854-1858.
  44. Yang, E. J. and H. C. Chang. 2008. Antifungal activity of Lactobacillus plantarum isolated from kimchi. Korean J. Microbiol. Biotechnol. 36: 276-284.
  45. Yang, E. J. and H. C. Chang. 2010. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food Microbiol. 139: 56-63.