Antibiofilm Activity of Scutellaria baicalensis through the Inhibition of Synthesis of the Cell Wall (1, 3)-${\beta}$-D-Glucan Polymer

세포벽 (1,3)-${\beta}$-D-Glucan Polymer 합성의 저해로 인한 황금(Scutellaria baicalensis)의 항바이오필름 활성

  • Kim, Younhee (Department of Oriental Medicine, Semyung University)
  • Received : 2012.09.25
  • Accepted : 2012.11.02
  • Published : 2013.03.28


Candida biofilms are self-organized microbial communities growing on the surfaces of host tissues and medical devices. These biofilms have been displaying increasing resistance against conventional antifungal agents. The roots of Scutellaria baicalensis have been widely used for medicinal purpose throughout East Asia. The aim of the present study was to evaluate the effect of S. baicalensis aqueous extract upon the preformed biofilms of 10 clinical C. albicans isolates, and assess the mechanism of the antibiofilm activity. Its effect on preformed biofilm was judged using an XTT reduction assay and the metabolic activity of all tested strains were reduced ($57.7{\pm}17.3$%) at MIC values. The S. baicalenis extract inhibited (1, 3)-${\beta}$-D-glucan synthase activity. The effect of S. baicalensis on the morphology of C. albicans was related to the changes in growth caused by inhibiting glucan synthesis; most cells were round and swollen, and cell walls were densely stained or ruptured. The anticandidal activity was fungicidal, and the extract also arrested C. albicans cells at $G_0/G_1$. The data suggest that S. baicalensis has multiple fatal effects on target fungi, which ultimately result in cell wall disruption and killing by inhibiting (1, 3)-${\beta}$-D-glucan synthesis. Therefore, S. baicalensis holds great promise for use in treating and eliminating biofilm-associated Candida infections.


Antifungal activity;biofilm;Candida albicans;cell wall;(1,3)-${\beta}$-D-glucan synthase;Scutellaria baicalensis


  1. Beaulieu, D., J. Tang, S. B. Yan, J. M. Vessels, J. A. Radding, and T. R. Parr, Jr. 1994. Characterization and cilofungin inhibition of solubilized Aspergillus fumigatus (1,3)-$\beta$-D-glucan synthase. Antimicrob. Agents Chemother. 38: 937-944.
  2. Blankenship, J. R. and A. P. Mitchell. 2006. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol. 9: 588-594.
  3. Calderone, R. A. and P. C. Braun. 1991. Adherence and receptor relationships of Candida albicans. Microbiol. Rev. 55: 1-20.
  4. Calderone, R. A. and W. A. Fonzi. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9: 327-335.
  5. Chandra, J., D. M. Kuhn, P. K. Mukherjee, L. L. Hoyer, T. McCormick, and M. A. Ghannoum. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183: 5385-5394.
  6. CLSI. 2008a. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-third edition; CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne.
  7. Douglas, C. M., F. Foor, J. A. Marrinan, N. Morin, J. B. Nielsen, A. M. Dahl, P. Mazur, W. Baginsky, W. Li, and M. el-Sherbeini. 1994. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1, 3- $\beta$-D-glucan synthase. Proc. Natl. Acad. Sci. U.S.A. 91: 12907- 12911.
  8. Douglas, L. J. 2003. Candida biofilms and their role in infection. Trends Microbiol. 11: 30-36.
  9. Guarrera, P. M. 2005. Traditional phytotherapy in central Italy. Fitotherapia 76: 1-25.
  10. Haynes, K. 2001. Virulence in Candida species. Trends Microbiol. 9: 591-596.
  11. Henry-Stanley, M. J., R. M. Garni, and C. L. Wells. 2004. Adaptation of FUN-1 and Calcofluor white stains to assess the ability of viable and nonviable yeast to adhere to and be internalized by cultured mammalian cells. J. Microbiol. Methods 59: 289-292.
  12. Huang, W. H., Lee, A. R., and C. H. Yang. 2006. Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci. Biotechnol. Biochem. 70: 2371-2380.
  13. Klis, F. M., A. F. J. Ram., and P. W. J. De Groot. 2007. A molecular and genomic view of the fungal cell wall. The Mycota 8: 97-120.
  14. Kolotila, M. P., C. W. Smith, and A. L. Rogers. 1987. Candidacidal activity of macrophages from three mouse strains as demonstrated by a new method: neutral red staining. Med. Mycol. 25: 283-290
  15. Krcmery, V. and A. J. Barnes. 2002. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J. Hosp. Infect. 50: 243-260.
  16. Kurtz, M. B., C. Douglas, J. Marrinan, K. Nollstadt, J. Onishi, S. Dreikorn, J. Milligan, S. Mandala, J. Thompson, and J. M. Balkovec. 1994. Increased antifungal activity of L-733,560, a water-soluble, semisynthetic pneumocandin, is due to enhanced inhibition of cell wall synthesis. Antimicrob. Agents Chemother. 38: 2750-2757.
  17. Liu, M., V. Seidel, D. R. Katerere, and A. I. Gray. 2007. Colorimetric broth microdilution for the antifungal screening of plant extracts against yeast. Methods 42: 325-329.
  18. Mahmoud, A. G. and B. R. Louis. 1999. Antifungal agents: mode of action, mechanism of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12: 501-517.
  19. Millard, P. J., B. L. Roth, H. -P. Thi, S. T. Yue, and R. P. Haugland. 1997. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeast. Appl. Environ. Microbiol. 63: 2897-2905.
  20. O'Brien, J., J. Wilson, T. Orton, and F. Pognan. 2000. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267: 5421-5426.
  21. Oliver, B. G., P. M. Silver, C. Marie, S. J. Hoot, S. E. Leyde, and T. C. White. 2008. Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiol. 154: 960-970.
  22. Park, S. J., S. J. Choi, W. S. Shin, H. M. Lee, K. S. Lee, and K. H. Lee. 2009. Relationship between biofilm formation ability and virulence of Candida albicans. J. Bacteriol. Virol. 39: 119-124.
  23. Pfaller, M. A. and D. J. Diekema. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20: 133-163.
  24. Ramage, G., J. P. Martinez, and J. L. Lopez-Ribot. 2006. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res. 6: 979-986.
  25. Ramage, G., K. Vande-Walle, B. L. Wickes, and J. L. Lopez-Ribot. 2001. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother. 45: 2475-2479.
  26. Roling, E. E., M. E. Klepser, A. Wasson, R. E. Lewes, E. J. Ernst, and M. A. Pfaller. 2002. Antifungal activities of fluconazole, caspofungin (MK0991), and anidulafungin (LY303366) alone and in combination against Candida spp. and Cryotococcus neoformans via time-kill methods. Diagn. Microbial. Infec. Dis. 43: 13-17.
  27. Shedletzky, E., C. Unger, and D. P. Delmer. 1997. A microtiterbased fluorescence assay for (1,3)-$\beta$-glucan synthases. Anal. Biochem. 249: 88-93.
  28. Tang, J. and T. R. Parr, Jr. 1991. W-1 solubilization and kinetics of inhibition by cilofungin of Candida albicans (1,3)-$\beta$-D-glucan synthase. Antimicrob. Agents Chemother. 35: 99-103.
  29. Yoon, S. B., Y. J. Lee, S. K. Park, H. C. Kim, H. Bae, H. M. Kim, S. G. Ko, H. Y. Choi, M. S. Oh, and W. Park. 2009. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPSactivated RAW 264.7 macrophages. J. Ethnopharmacol. 125: 286-290.