Role of Unstable Phenanthrene-Degrading Pseudomonas species in Natural Attenuation of Phenanthrene-Contaminated Site

  • Prakash, Om (Microbial Culture Collection, National Centre for Cell Science) ;
  • Lal, Rup (Department of Zoology, University of Delhi)
  • Received : 2012.07.17
  • Accepted : 2012.10.25
  • Published : 2013.03.28


An unstable yet efficient phenanthrene-degrading bacterium strain Ph-3 was isolated from a petroleum-contaminated site at the Mathura Oil Refinery, India. The strain was identified as Pseudomonas sp. using a polyphasic approach. An analysis of the intermediates and assays of the degradative enzymes from a crude extract of phenanthrene-grown cells showed a novel and previously unreported pattern of 1, 2-dihydroxy naphthalene and salicylic acid production. While strain Ph-3 lost its phenanthrene- degrading potential during successive transfers on a rich medium, it maintained this trait in oligotrophic soil conditions under the stress of the pollutant and degraded phenanthrene efficiently in soil microcosms. Although the maintenance and in vitro study of unstable phenotypes are difficult and such strains are often missed during isolation, purification, and screening, these bacteria constitute a substantial fraction of the microbial community at contaminated sites and play an important role in pollutant degradation during biostimulation or monitored natural attenuation.




  1. Balashova, N. V., A. Stolz, H. J. Knackmuss, I. A. Kosheleva, A. V. Naumov, and A. M. Boronin. 2001. Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy- 2-naphthoic acid hydroxylation from the naphthalene and phenanthrene- degrading bacterial strain Pseudomonas putida BS202- P1. Biodegradation 12: 179-188.
  2. Fiest, C. F. and D. Hegeman. 1969. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. J. Bacteriol. 100: 868-877.
  3. Gentry, T., C. Rensing, and I. Pepper. 2004. New Approaches for Bioaugmentation as a Remediation Technology. Crit. Rev. Environ. Sci. Technol. 48: 447-494.
  4. Hegman, G. D. 1966. Synthesis of the enzyme of the mandelate pathway by Pseudomonas putida. J. Bacteriol. 91: 1140- 1154.
  5. Iwabuchi, T. and S. Harayama. 1998. Biochemical and molecular characterization of 1- hydroxy-2-naphthoate dioxygenase from Nocordioides sp. KP7. J. Biol. Chem. 273: 8332-8336.
  6. Iwabuchi, T. and S. Haryana. 1997. Biochemical and genetic characterization of 2- carboxylbenzaldehyde-dehydrogenase an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J. Bacteriol. 179: 6488-6494.
  7. Jermy, A. 2010. Bioremediation: Seek and destroy. Nat. Rev. Microbiol. 8: 465.
  8. Kiyohara, H., K. Nagao, K. Kouno, and Y. Yano. 1982. Phenanthrene degrading phenotype of Alcaligenes faecalis AFK2. Appl. Environ. Microbiol. 43: 458-461.
  9. Kostka, J. E., O. Prakash, W. A. Overholt, S. J. Green, G. Freyer, A. Canion, J. Delgardio, N. Norton, T. C. Hazen, and M. Huettel. 2011. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl. Environ. Microbiol. 77: 7962-7974.
  10. Li, J., T. Wang, B. Shao, J. Shen, S. Wang, and Y. Wu. 2012. Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to swine feedlots: Potential transfer to agricultural lands. Environ. Health Perspect 120: 1144-1149.
  11. Liu, Y., J. Zhang, and Z. Zhang. 2004. Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Biodegradation 15: 205-212.
  12. Mona, L., T. Omori, and T. Kodama. 1993. Microbial degradation of dibenzofuran, fluorine and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl. Environ. Microbiol. 59: 285-289.
  13. Patel, V., S. Cheturvedula, and D. Madamwar. 2012. Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. J. Hazard. Mater 201: 43-51.
  14. Patnaik, P. 1992. Hydrocarbon, aromatic. In: A Comprehensive guide to the hazardous properties of chemical substances, (Van Nostrand Reinhold ed.), New York. pp. 429-445.
  15. Pertsova, R. N., B. P. Baskunov, and L. A. Golovleva. 1982. Oxidation characteristic of aromatic acids formed in DDT breakdown by a Pseudomonas aeruginosa culture. Mikrobiologiia 51: 275-280.
  16. Prabhu, Y. and P. S. Phale. 2003. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: noval metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl. Microbiol. Biotechnol. 6: 1 342-351.
  17. Prakash, O. and R. Lal. 2006. Phenanthrene-degrading bacterium from fly ash dumping site, Sphingobium fuliginis sp. nov. and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int. J. Syst. Evol. Microbiol. 56: 2147-2152.
  18. Prakash, O., K. Kumari, and R. Lal. 2007. Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int. J. Syst. Evol. Microbiol. 57: 527-531.
  19. Prakash, O., T. M. Gihring, D. D. Dalton, K. J. Chin, S. J. Green, D. M. Akob, G. Wanger, and J. E. Kostka. 2010. Geobacter daltonii sp. nov., an Fe (III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Int. J. Syst. Evol. Microbiol. 60: 546-553.
  20. Rodrigues, A. C., S. Wuertz, A. G. Brito, and L. F. Melo. 2005. Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: kinetics and physiological aspects. Biotechnol. Bioeng. 90: 281-289.
  21. Samanta, S. K., A. K. Chakraborti, and R. K. Jain. 1999. Degradation of Phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1- naphthol. Appl. Microbiol. Biotechnol. 53: 98-107.
  22. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. Newark, DE: MIDI Inc.
  23. Smith, M. A. and M. J. Bidochka. 1998. Bacterial fitness and plasmid loss: The importance of culture conditions and plasmid size. Can. J. Microbiol. 44: 351-355.
  24. Tyagi, M., Manuela M., da Fonseca, R. and de Carvalho, C C. C. R. 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22: 231-241.
  25. Van Veen, J. A., L. S. van Overbeek, and J. D. van Elsas. 1997. Fate and activity of microorganism introduced into soil. Microbiol. Mol. Biol. Rev. 62: 121-135.
  26. Wang, S., N. Nomura, T. H. Nakajima, and H. Uchiyama. 2012. Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J. Biosci. Bioeng. 113: 624-630.
  27. Watve, M. M., N. Dahanukar, and M. G. Watve. 2010. Sociobiological control of plasmid copy number in bacteria. PLoS ONE 5: e9328.
  28. William, F. G. and E. J. Galen. 1988. Two-stage mineralization of phenanthrene by estuarine enrichment culture. Appl. Environ. Microbiol. 54: 929-936.
  29. Wong, J. W. C., K. M. Lai, C. K. Wan, K. K. Ma, and M. Fang. 2002. Isolation and optimization of PAH degradative bacteria from contaminated soil for PAH bioremediation. Water Air Soil Pollut. 139: 1-13.
  30. Yamamoto, S., M. Katagiri, H. Meno, and O. Hayaishi. 1965. Salicylate hydroxylase, a monooxygenase requiring flavin adenine dinucleotide. J. Biol. Chem. 240: 3408-3413.
  31. Zhang, T., X.-X. Zhang, and L. Ye. 2011. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS ONE 6: e26041.
  32. Zhao, H. P., S. H. Liang, and X. Yang. 2011. Isolation and characterization of catechol 2, 3-dioxygenase genes from phenanthrene degraders Sphingomonas, sp. ZP1 and Pseudomonas sp. ZP2. Environ. Technol. 33: 1895-901.
  33. Zhou, L., X. Sheng, S. Zhang, and J. Liu. 2005. Screening of phenanthrene-degrading bacterium and its degradation conditions. Ying Young Sheng Tai Xue Bao (in Chinease) 16: 2399- 2402.