Production of Antimicrobial Substances by Strains of Myxobacteria Corallococcus and Myxococcus

Corallococcus와 Myxococcus 속 점액세균 균주들에 의한 항균 물질의 생산

  • Shin, Hyejin (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Youn, Jinkwon (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • An, Dongju (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Cho, Kyungyun (Myxobacteria Bank, Department of Biotechnology, Hoseo University)
  • 신혜진 (호서대학교 생명공학과 점액세균은행) ;
  • 윤진권 (호서대학교 생명공학과 점액세균은행) ;
  • 안동주 (호서대학교 생명공학과 점액세균은행) ;
  • 조경연 (호서대학교 생명공학과 점액세균은행)
  • Received : 2012.10.29
  • Accepted : 2013.01.03
  • Published : 2013.03.28


We prepared culture extracts of 174 Corallococcus and 207 Myxococcus strains isolated in Korea, and compared their antimicrobial activity against Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus. The percentage of strains showing antifungal activity was lower in Corallococcus (7.5% [13 of the 174 strains]) than in Myxococcus (51.7% [107 of the 207 strains]). However, the percentage of strains exhibiting antibacterial activity was higher in Corallococcus (12.1% [21 strains]) than in Myxococcus (1% [2 strains]). The culture extracts of 6 Corallococcus strains inhibited both P. aeruginosa and S. aureus and displayed similar high-performance liquid chromatography chromatograms, although the shapes of their fruiting bodies were dissimilar. The rate of production of antibacterial substances was the highest when the strains were cultured in CYS medium for more than 6 days.


Myxobacteria;antimicrobial activity;Corallococcus;Myxococcus


  1. Garcia, R., K. Gerth, M. Stadler, I. J. Jr. Dogma, and R. Müller. 2010. Expanded phylogeny of myxobacteria and evidence for cultivation of the 'unculturables'. Mol. Phylogenet. Evol. 57: 878-887.
  2. Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1980. Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales). I. Cultivation, isolation, physico-chemical and biological properties. J. Antibiot. 33: 1474-1479.
  3. Gerth, K., S. Pradella, O. Perlova, S. Beyer, and R. Müller. 2003. Myxobacteria: proficient producers of novel natural products with carious biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106: 233-253.
  4. Gerth, K., W. Trowitzsch, V. Wray, G. Hofle, H. Irschik, and H. Reichenbach. 1982. Pyrrolnitrin from Myxococcus fulvus (Myxobacterales). J. Antibiot. 35: 1101-1103.
  5. Hagen, D. C., A. P. Bretscher, and D. Kaiser. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64: 284-296.
  6. Huntley, S., Y. Zhang, A. Treuner-Lange, S. Kneip, C. W. Sensen, and L. Søgaard-Andersen. 2012. Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259. J. Bacteriol. 194: 3012-3013.
  7. Hyun, H., J. Chung, H. Lee, J. Youn, C. Lee, D. Kim, and K. Cho. 2009. Isolation of cellulose-degrading myxobacteria Sorangium cellulosum. Korean J. Microbiol. 45: 48-53.
  8. Irschik, H. and H. Reichenbach. 1985. The mechanism of action of myxovalargin A, a peptide antibiotic from Myxococcus fulvus. J. Antibiot. 38: 1237-1245.
  9. Irschik, H., K. Gerth, T. Kemmer, H. Steinmetz, and H. Reichenbach. 1983. The myxovalargins, new peptide antibiotics from Myxococcus fulvus (Myxobacterales). I. Cultivation, isolation, and some chemical and biological properties. J. Antibiot. 36: 6-12.
  10. Irschik, H., R. Jansen, G. Höfle, K. Gerth, and H. Reichenbach. 1985. The corallopyronins, new inhibitors of bacterial RNA synthesis from myxobacteria. J. Antibiot. 38: 145-152.
  11. Kim, Y. S., W. C. Bae, and S. J. Back. 2003. Bioactive substances from myxobacteria. Korean J. Microbiol. Biotechnol. 31: 1-12.
  12. Park, S., B. Lee, J. Kim, C. Lee, E. Jang, and K. Cho. 2004. Isolation and characterization of bacteriolytic wild myxobacteria. Korean J. Microbiol. Biotechnol. 32: 218-223.
  13. Reichenbach, H. 2005. Myxococcales. pp. 1059-1144. In Brenner, D. J., N. R. Krieg, J. T. Staley, and G. M. Garrity (ed.), Bergey's Manual of Systematic Bacteriology, 2nd ed. Bergey's Manual Trust, East Lansing, MI, USA.
  14. Belogurov, G. A., M. N. Vassylyeva, A. Sevostyanova, J. R. Appleman, A. X. Xiang, R. Lira, S. E. Webber, S. Klyuyev, E. Nudler, I. Artsimovitch, and D. G. Vassylyev. 2009. Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457: 332-335.
  15. Dawind, W. 2000. Biology and global distribution of myxobacteria in soil. FEMS Microbiol. Rev. 24: 403-427.
  16. Reichenbach, H. and G. Hofle. 1999. Myxobacteria as producers of secondary metabolites. pp. 149-179. In Grabley S. and R. Thiericke (ed.), Drug Discovery from Nature, Springer Verlag, Berlin, Germany.
  17. Reichenbach, H. and M. Dworkin. 1992. The myxobacteria, pp. 3416-3487. In Balows, A., H. G. Trper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. IV, Springer Verlag, New York, USA.
  18. Thierbach, G. and H. Reichenbach. 1981. Myxothiazol, a new antibiotic interfering with respiration. Antimicrob. Agents Chemother. 19: 504-507.
  19. Weissman, K. J. and R. Müller. 2009. A brief tour of myxobacterial secondary metabolism. Bioorg. Med. Chem. 17: 2121- 2136.
  20. Weissman, K. J. and R. Müller. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27: 1276-1295.
  21. Wenzel, S. C. and R. Muller. 2009. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat. Prod. Rep. 26: 1385-1407.