Purification and Characterization of a Fibrinolytic Enzyme Produced by Bacillus amyloliquefaciens HC188

Bacillus amyloliquefaciens HC188이 생산하는 혈전분해 효소의 정제 및 특성

  • Shin, So Hee (Division of Biological Science and Technology, Yonsei University) ;
  • Hong, Sung Wook (Division of Biological Science and Technology, Yonsei University) ;
  • Chung, Kun Sub (Division of Biological Science and Technology, Yonsei University)
  • 신소희 (연세대학교 생명과학기술학부) ;
  • 홍성욱 (연세대학교 생명과학기술학부) ;
  • 정건섭 (연세대학교 생명과학기술학부)
  • Received : 2012.08.27
  • Accepted : 2012.09.25
  • Published : 2013.03.28


A bacterium producing a fibrinolytic enzyme was isolated from Cheonggukjang. The bacterium was identified as a strain of Bacillus amyloliquefaciens by 16S rDNA analysis and designated as B. amyloliquefaciens HC188. The optimum culture medium appeared to be one containing 0.5% (w/v) maltose and 0.5% (w/v) soytone. Bacterial growth in the optimal medium at $37^{\circ}C$ reached the stationary phase after 27 h of incubation and the fibrinolytic enzyme showed optimum activity at 24 h. The enzyme was purified by 20-80% ammonium sulfate precipitation, CM Sepharose fast flow ion exchange chromatography, and Sephacryl S-200HR column chromatography. Its specific activity was 38359.3 units/mg protein and the yield was 5.5% of the total activity of the crude extracts. The molecular weight was 24.7 kDa and the amino acids of the N-terminal sequence were AQSVPYGVSQIKAPA. The fibrinolytic enzyme activity had an optimum temperature of $40^{\circ}C$ and an optimum pH of 8.0, and the enzyme was stable in the ranges $20-40^{\circ}C$ and pH 6.0-8.0. Enzyme activity was increased by $Ca^{2+}$ and $Co^{2+}$ but inhibited by $Cu^{2+}$, EDTA, and PMSF. It is suggested that the purified enzyme is a metallo-serine protease.


Purification;fibrinolytic enzyme;Bacillus amyloliquefaciens;Cheonggukjang


  1. Agrebi, R., A. Haddar, N. Hmidet, K. Jellouli, L. Manni, and M. Nasri. 2009. BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: Purification, biochemical and molecular characterization. Process Biochem. 44: 1252-1259.
  2. Ahn, Y. S., Y. S. Kim, and D. H. Shin. 2006. Isolation, identification, and fermentation characteristics of Bacillus sp. with high protease activity from traditional Cheonggukjang. Korean. J. Food. Sci. Technol. 38: 82-87.
  3. Anson, M. L. 1939. The Estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J. Gen. Physiol. 22: 78-89.
  4. Astrup, T. and S. Müllertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40: 346-347.
  5. Cho, S. J., S. H. Oh., R. D. Pridmore, M. A. Juillerat, and C. H. Lee. 2003. Purification and characterization of proteases from Bacillus amyloliquefaciens isolated from traditional soybean fermentation starter. J. Agric. Food Chem. 51: 7664-7670.
  6. Cho, Y. J., W. S. Cha, S. K. Bok, M. U. Kim, S. S. Cheon, and U. K. Choi. 2000. Production and separation of anti-hypertensive peptide during Chunggugjang fermentation with Bacillus subtilis CH-1023. J. Korean Soc. Agric. Chem. Biotechnol. 43: 247-252.
  7. Choi, N. S., K. H. Yoo, J. H. Hahm, K. S. Yoon, K. T. Chang, B. H. Hyun, P. J. Maeng, and S. H. Kim. 2005. Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity produced by Bacillus sp. DJ-2 from Doen- Jang. J. Microbiol. Biotechnol. 15: 72-79.
  8. Collen, D. and H. R. Lijnen. 2009. The tissue-type plasminogen activator story. Arterioscler. Thromb. Vasc. Biol. 29: 1151- 1155.
  9. Craik, C. S., S. Roczniak, C. Largman, and W. J. Rutter. 1987. The catalytic role of the active site aspartic acid in serine protease. Science. 237: 909-913.
  10. Dubey, R., J. Kumar, D. Agrawala, T. Char, and P. Pusp. 2011. Isolation, production, purification, assay and characterization of fibrinolytic enzyme (nattokinase, streptokinase and urokinase) from bacterial sources. Afr. J. Biotechnol. 10: 1408-1420.
  11. Edman, P. and G. Begg. 1967. A protein sequenator. European J. Biochem. 1: 80-91.
  12. Fujita, M., K. Nomura, K. Hong, Y. Ito, A. Asada, and S. Nishimuro. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Comm. 197: 1340-1347.
  13. Hassanein, W. A., E. Kotb, N. M. Awny, and Y. A. El-Zawahry. 2011. Fibrinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42. J. Biosci. 36: 773-
  14. Hong, S. W., J. Y. Kim, B. K. Lee, and K. S. Chung. 2006. The bacterial biological response modifier enriched Chungkookjang fermentation. Korean J. Food Sci. Technol. 38: 548-553.
  15. Hwang, H. A., N. K. Lee, I. J. Cho, Y. T. Hahm, K. O. Kwon, and B. Y. Kim. 2008. Selection of microorganisms and optimization of manufacture process for Cheonggukjang. Korean J. Food Sci. Technol. 40: 406-411.
  16. Hwang, J. S., H. J. Yoo, S. J. Kim, and H. B. Kim. 2008. Charactrization of $\beta$-1,4-glucanase activity of Bacillus licheniformis B1 in Chungkookjang. Korean J. Microbiol. 44: 69-73.
  17. Hwang, J. S., S. J. Kim, and H. B. Kim. 2009. Antioxidant and blood-pressure reduction effects of fermented soybean, Chungkookjang. Korean J. Microbiol. 45: 54-57.
  18. Hwang, K. J., K. H. Choi, M. J. Kim, C. S. Park, and J. H. Cha. 2007. Purification and charaterization of a new fibrinolytic enzyme of Bacillus licheniformis KJ-31, isolated from Korean traditional Jeot-gal. J. Microbiol. Biotechnol. 17: 1469-1476.
  19. Jaouadi, B., S. Ellouz-Chaabouni, M. Rhimi, and S. Bejar. 2008. Biochemical and molecular characterization of a detergentstable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90: 1291-1305.
  20. Jo, H. D., H. A. Lee, S. J. Jeong, and J. H. Kim. 2011. Purification and characterization of a major fibrinolytic enzyme from Bacillus amyloliquefaciens MJ5-41 isolated from Meju. J. Microbiol. Biotechnol. 21: 1166-1173.
  21. Kim, A. R., J. J. Lee, H. Lee, H. C. Chang, and M. Y. Lee. 2010. Body-weight-loss and cholesterol-lowering effects of Cheonggukjang (a fermented soybean paste) given to rats fed a high-fat/high-cholesterol diet. Korean J. Food Preserv. 17: 688-697.
  22. Kim, G. M., A. R. Lee, K. W. Lee, J. Y. Park, J. Y. Chun, J. H. Cha, Y. S. Song, and J. H. Kim. 2009. Characterzation of a 27kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from Cheonggukjang. J. Microbiol. Biotechnol. 19: 997-1004.
  23. Kim, H. K., G. T. Kim, D. K. Kim, W. A. Choi, S. H. Park, Y. K. Jeong, and I. S. Kong. 1997. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84: 307-312.
  24. Kim, S. H., N. S. Choi, W. Y. Lee, J. W. Lee, and D. H. Kim. 1998. Isolation of Bacillus strains secreting fibrinolytic enzymes from Doenjang. Korean J. Microbiol. 34: 87-90.
  25. Kim, Y. M., M. A. Kim, and Y. W. Kim. 1999. The changes of lipoxygenase-2, -3 and urease activities and of trypsin inhibitor, tannin and phytic acid contents in process of Chunggukjang. Korean Soybean Digest. 16: 56-62.
  26. Kim, W. K., K. Y. Choi, Y. T. Kim, H. H. Park, J. Y. Choi, Y. S. Lee, H. I. Oh, I. B. Kwon, and S. Y. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-jang. Appl. Environ. Microbiol. 62: 2482-2488.
  27. Korea National Statistical Office. A study on causes of death for 2011 (2012).
  28. Kunamneni, A., B. D. Ravuri, P. Ellaiah, T. Prabhakhar, and V. Saisha. 2008. Urokinase - a strong plasmingen activiator. Biotechnol. Mol. Biol. Rev. 3: 58-70.
  29. Kwon, H. Y., Y. S. Kim, G. S. Kwon, C. S. Kwon, and H. Y. Sohn. 2004. Isolation of immuno-stimulation strain Bacillus pumilus JB-1 from Chungkook-jang and fermentational characteristics of JB-1. Korean J. Microbiol. Biotechnol. 32: 291-296.
  30. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.
  31. Lee, D. G., N. Y. Kim, M. K. Jang, B. H. Yoo, K. Y. Kim, S. G. Kim, Y. K. Jeong, and S. H. Lee. 2006. Isolation of a fibrinolytic bacterium from Cheongkukjang and characterization of its bioactivity. Korean J. Microbiol. Biotechonol. 34: 299-305.
  32. Lee, S. K., D. H. Bae, T. J. Kwon, S. B. Lee, H. H. Lee, J. H. Park, S. Heo, and Michael G. Johnson. 2001. Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KOD-13 isolated from soybean paste. J. Microbiol. Biotechnol. 11: 845-852.
  33. Mahajan, P. M., S. Nayak, and S. S. Lele. 2012. Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: media optimization, purification and characterization. J. Biosci. Bioeng. 113: 307-314.
  34. Markland, F. S., B. R. Dumas, and E. L. Smith. 1967. Subtilisin BPN' VI. Isolation and sequence of peptic peptides. J. Biol. Chem. 242: 5174-5197.
  35. Mine, Y., A. H. K. Wong, and B. Jiang. 2005. Fibrinolytic enzymes in asian traditional fermented foods. Food Res. Inter. 38: 243-250.
  36. Noh, K. A. D. H. Kim, N. S. Choi, and S. H. Kim. 1999. Isolation of fibrinolytic enzyme producing strains from kimchi. Korean J. Food Sci. Technol. 31: 219-223.
  37. Ohnishi, T. S. and J. K. Barr. 1978. A simplified method of quantitationg protein using the biuret and phenol reagents. Anal. Biochem. 86: 193-200.
  38. Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829-835.
  39. Rhee, J. H., K. H. Park, K. R. Yoon, C. B. Yim, and I. H. Lee. 2004. Isolation of Bacillus subtilis producing the Cheongkukjang with reduced off-flavor by suppressing the growth of bacteria causing off-flavor. Food Sci. Biotechonol. 13: 801-805.
  40. Saitou, N. and M. Nei. 1987. The neighbor-joining methods: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  41. Shon, M. Y., K. I. Seo, S. K. Park, Y. S. Cho, and N. J. Sung. 2001. Some biological activities and isoflavone content of Chungkuhjang prepared with black beans and Bacillus strain. J. Korean Soc. Food Sci. Nutr. 30: 662-667.
  42. Sikri, N. and A. Bardia. 2007. A history of streptokinase use in acute myocardial infarction. Tex. Heart Inst. J. 34: 318-327.
  43. Sneath, P. H. A. 1986. Endospore forming Gram-positive rods and cocci, pp. 1104-1139. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, Baltimore, MD. USA.
  44. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
  45. Wang, C. T., B. P. Ji, B. Li, R. Nout, P. L. Li, H. Ji, and L. F. Chen. 2006. Purification and characterization of a fibrinolytic enzyme of Bacillus subtillis DC33, isolated from Chinese traditional Douchi. J. Ind. Microbiol. Biotechnol. 33: 750-758.
  46. Yang, J. L., H. S. Kim, J. H. Hong, and Y. S. Song. 2006. Purification and characteristics of fibrinolytic enzyme from Chungkukjang. J. Food Sci. Nutr. 11: 127-132.
  47. Yeo, W. S., M. J. Seo, M. J. Kim, H. H. Lee, B. W. Kang, J. U. Park, Y. H. Choi, and Y. K. Jeong. 2011. Biochemical analysis of a fibrinolytic enzyme purification from Bacillus subtilis strain A1. J. Microbiol. 49: 376-380.
  48. Yin. L. J., H. H. L, and S. T. Jiang. 2010. Bioproperties of potent nattokinase from Bacillus subtilis YJ1. J. Agric. Food Chem. 58: 5737-5742.
  49. Yoon, K. D., D. J. Kwon, S. S. Hong, S. I. Kim and K. S. Chung. 1996. Inhibitory effect of soybean and fermented soybean products on the chemically induced mutagenesis. Korean J. Appl. Microbiol. Biotechnol. 24: 525-528.