Isolation, Identification and Mutant Development of Butanol Tolerance Bacterium

부탄올 내성 미생물의 분리, 동정 및 변이주의 개발

  • Jung, Hyesook (Department of Food Science & Biotechnology, Kyungsung University) ;
  • Lee, Jinho (Department of Food Science & Biotechnology, Kyungsung University)
  • 정혜숙 (경성대학교 식품생명공학과) ;
  • 이진호 (경성대학교 식품생명공학과)
  • Received : 2012.10.23
  • Accepted : 2012.12.05
  • Published : 2013.03.28


Butanol-resistant bacteria were isolated from butanol solvent. The cell growth of isolated strains declined with increasing concentrations of butanol, and isolated strain BRS02 displayed more resistance to 12.5 g/L of butanol than other isolated strains. In addition, strain BRS251, which was resistant to even higher concentrations of butanol, was developed by the mutation of BRS02 using UV. BRS251 could grow in LB medium containing up to 17.5 g/L of butanol, 32.5 g/L of propanol, or 6 g/L of pentanol, whereas the control strain Escherichia coli was found to be tolerant to 7.5 g/L of butanol, 20 g/L of propanol, or 2 g/L of pentanol. The isolated BRS02, a Gram(+) bacterium seen to have a cocci form under the microscope, grew in 6.5% NaCl. According to biochemical tests, BRS02 can metabolize and produce acid with D-galactose, D-maltose, D-mannitol, D-mannose, methyl-${\beta}$-Dglucopyranoside, D-ribose, sucrose, or D-trehalose, as carbon sources. Also, this strain showed resistance to bacitracin, vibriostatic agent O/129, and optochin, alongside positive activities for arginine dihydrolase, ${\alpha}$-glucosidase, and urease. The BRS02 strain was identified as Staphylococcus sp. by analyses of the 16S rRNA gene, phylogenetic tree, and biochemical tests.




  1. Alsaker, K. V., C. Paredes, and E. T. Papoutsakis. 2010. Metabolite stress and tolerance in the production of biofuels and chemicals: Gene-expression-based systems analysis of butanol,butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol. Bioeng. 105: 1131-1147.
  2. Atsumi, S., A. F. Cann, M. R. Connor, C. R. Shen, K. M. Smith, M. P. Brynildsen, K. J. Y. Chou, T. Hanai, and J. C. Liao. 2007. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10: 305-311.
  3. Atsumi, S., T. Hanai, and J. C. Liao. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86-90.
  4. Blombach, B., T. Riester, S. Wieschalka, C. Ziert, J. W. Youn, V. F. Wendisch, and B. J. Eikmanns. 2011. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl. Environ. Microbiol. 77: 3300-3310.
  5. Cann, A. F. and J. C. Liao. 2008. Production of 2-methyl-1- butanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 81: 89-98.
  6. Ezeji, T., C. Milne, N. D. Price, and H. P. Blaschek. 2010. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol. 85: 1697-1712.
  7. Fischer, C. R., D. K. Marcuschamer, and G. Stephanopoulos. 2008. Selection and optimization of microbial hosts for biofuels production. Metab. Eng. 10: 295-304.
  8. Grkovic, S., M. H. Brown, K. M. Hardie, N. Firth, and R. A. Skurray. 2003. Stable low-copy-number Staphylococcus aureus shuttle vectors. Microbiology 149: 785-794.
  9. Knoshaug, E. P. and M. Zhang. 2008. Butanol tolerance in a selection of microorganisms. Appl. Biochem. Biotechnol. 153: 13-20.
  10. Kumar, S., R. Jansen, F. Sasse, and G. Hofle. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163.
  11. Lee, J. H. 2012. Isolation and genetic characterization of protease- producing halophilic bacteria from fermenting anchovy. J. Life Science 22: 167-176.
  12. Lee, S. Y., J. H. Park, S. H. Jang, L. K. Nielsen, J. Kim, and K. S. Jung. 2008. Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 101: 209-228.
  13. Li, J., J. B. Zhao, M. Zhao, Y. L. Yang, W. H. Jiang, and S. Yang. 2010. Screening and characterization of butanol-tolerant micro-organisms. Lett. Appl. Microbiol. 50: 373-379.
  14. Lin, Y. and S. Tanaka. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642.
  15. Liu, S. and N. Qureshi. 2009. How microbes tolerate ethanol and butanol. New Biotech. 26: 117-121.
  16. Park, H. J. and J. H. Lee. 2012. Transcriptional analysis responding to propanol stress in Escherichia coli. J. Life Science 22: 417-427.
  17. Qureshi, N. and H. P. Blaschek. 2001. Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 27: 287-291.
  18. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for constructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  19. Sambrook, J. and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  20. Shen, C. R. and J. C. Liao. 2008. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10: 312-320.
  21. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
  22. Xu, M., P. Wang, F. Wang, and X. Xiao. 2005. Microbial diversity at a deep-sea station of the Pacific nodule province. Biodivers. Conserv. 14: 3363-3380.
  23. Yan, Y. and J. C. Liao. 2009. Engineering metabolic systems for production of advanced fuels. J. Ind. Microbiol. Biotechnol. 36: 471-479.