DOI QR코드

DOI QR Code

Diversity and Antimicrobial Activity of Actinomycetes from Fecal Sample of Rhinoceros Beetle Larvae

장수풍뎅이 유충의 분변에 존재하는 방선균의 다양성 및 항균활성

  • Lee, Hye-Won (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Ahn, Jae-Hyung (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Kim, Minwook (Department of Biology, Kyung Hee University) ;
  • Weon, Hang-Yeon (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Song, Jaekyeong (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Lee, Sung-Jae (Department of Biology, Kyung Hee University) ;
  • Kim, Byung-Yong (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
  • 이혜원 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 안재형 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 김민욱 (경희대학교 생물학과) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 송재경 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 이성재 (경희대학교 생물학과) ;
  • 김병용 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2013.06.11
  • Accepted : 2013.06.25
  • Published : 2013.06.30

Abstract

Actinomycetes produce diverse secondary metabolites which have the primary importance in medicine, agriculture and food production, and key to this is their ability to interact with other organisms in natural habitats. In this study, we have investigated the taxonomical and functional diversity of actinomycetes in fecal sample of rhinoceros beetle larvae (Allomyrina dichotoma L.) by using culture-dependent and -independent approaches. For the culture-independent approach, the community DNA was extracted from the sample and 16S rRNA genes of actinomycetes were amplified using actinomycetes-specific PCR primers. Thirty-seven clones were classified into 15 genera and 24 species of actinomycetes. For the culture-dependent approach, 53 strains were isolated from larval feces, of which 27 isolates were selected based on morphological characteristics. The isolates were classified into 4 genera and 14 species, and 24 isolates (89%) were identified as the genus Streptomyces. Many of the representative isolates had antimicrobial activities against plant pathogenic fungi and Gram-positive bacteria. In addition, most of the isolates (78%) showed biochemical properties to hydrolyze cellulose and casein. The results demonstrated that diverse and valuable actinomycetes could be isolated from insect fecal samples, indicating that insect guts can be rich sources for novel bioactive compounds.

Acknowledgement

Supported by : 국립농업과학원

References

  1. Xu, X.X., Wang, H.L., Lin, H.P., Wang, C., Qu, Z., Xie, Q.Y., Ruan, J.S., and Hong, K. 2012. Microbispora hainanensis sp. nov., isolated from rhizosphere soil of Excoecaria agallocha in a mangrove. Int. J. Syst. Evol. Microbiol. 62, 2430-2434. https://doi.org/10.1099/ijs.0.037267-0
  2. Yoon, M.H., Ten, L.N., Im, W.T., and Lee, S.T. 2008. Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int. J. Syst. Evol. Microbiol. 58, 1878-1884. https://doi.org/10.1099/ijs.0.64768-0
  3. Oh, D.C., Poulsen, M., Currie, C.R., and Clardy, J. 2009. Dentigerumycin: A bacterial mediator of an ant-fungus symbiosis. Nat. Chem. Biol. 5, 391-393. https://doi.org/10.1038/nchembio.159
  4. Olano, C., Méndez, C., and Salas, J.A. 2009. Antitumor compounds from marine actinomycetes. Mar. Drugs 7, 210-248. https://doi.org/10.3390/md7020210
  5. Park, D.S., Foottit, R., Maw, E., and Hebert, P.D. 2011. Barcoding bugs: DNA-based identification of the true bugs (insecta: Hemiptera: Heteroptera). PLoS ONE 6, e18749. https://doi.org/10.1371/journal.pone.0018749
  6. Puhl, A.A., Selinger, L.B., McAllister, T.A., and Inglis, G.D. 2009. Actinomadura keratinilytica sp. nov., a keratin-degrading actinobacterium isolated from bovine manure compost. Int. J. Syst. Evol. Microbiol. 59, 828-834. https://doi.org/10.1099/ijs.0.003640-0
  7. Rivas, R., Sanchez, M., Trujillo, M.E., Zurdo-Pineiro, J.L., Mateos, P.F., Martinez-Molina, E., and Velazquez, E. 2003. Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree (Ulmus nigra). Int. J. Syst. Evol. Microbiol. 53, 99-103. https://doi.org/10.1099/ijs.0.02207-0
  8. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406 -425.
  9. Schafer, J., Jackel, U., and Kampfer, P. 2010. Development of a new pcr primer system for selective amplification of actinobacteria. FEMS Microbiol. Lett. 311, 103-112. https://doi.org/10.1111/j.1574-6968.2010.02069.x
  10. Scott, J.J., Oh, D.C., Yuceer, M.C., Klepzig, K.D., Clardy, J., and Currie, C.R. 2008. Bacterial protection of beetle-fungus mutualism. Science 322, 63. https://doi.org/10.1126/science.1160423
  11. Seipke, R.F., Barke, J., Brearley, C., Hill, L., Yu, D.W., Goss, R.J., and Hutchings, M.I. 2011. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE 6, e22028. https://doi.org/10.1371/journal.pone.0022028
  12. Seipke, R.F., Kaltenpoth, M., and Hutchings, M.I. 2012. Streptomyces as symbionts: An emerging and widespread theme? FEMS Microbiol. Rev. 36, 862-876. https://doi.org/10.1111/j.1574-6976.2011.00313.x
  13. Stach, J.E.M., Maldonado, L.A., Ward, A.C., Goodfellow, M., and Bull, A.T. 2003. New primers for the class Actinobacteria: Application to marine and terrestrial environments. Environ. Microbiol. 5, 828-841. https://doi.org/10.1046/j.1462-2920.2003.00483.x
  14. Stackebrandt, E. and Schumann, P. 2004. Reclassification of Promicromonospora pachnodae Cazemier et al. 2004 as Xylanimicrobium pachnodae gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 54, 1383-1386. https://doi.org/10.1099/ijs.0.63064-0
  15. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. Mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  16. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  17. Wang, Y., Zhang, Z., and Ruan, J. 1996. A proposal to transfer Microbispora bispora (lechevalier 1965) to a new genus, Thermobispora gen. nov., as Thermobispora bispora comb. nov. Int. J. Syst. Bacteriol. 46, 933-938. https://doi.org/10.1099/00207713-46-4-933
  18. Jog, R., Nareshkumar, G., and Rajkumar, S. 2012. Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J. Appl. Microbiol. 113, 1154-1164. https://doi.org/10.1111/j.1365-2672.2012.05417.x
  19. Kikuchi, Y. 2009. Endosymbiotic bacteria in insects: Their diversity and culturability. Microbes Environ. 24, 195-204. https://doi.org/10.1264/jsme2.ME09140S
  20. Kim, J.I. 1998. Insect's life in Korea (III) Coleoptera., p. 55. Korea University, Seoul, Korea.
  21. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., Won, S., and Chun, J. 2012. Introducing eztaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  22. Kim, H.G. and Kang, K.H. 2005. Bionomical characteristic of Allomyrina dichotoma. Korean J. Appl. Entomol. 44, 207-212.
  23. Kim, B.Y., Kshetrimayum, J.D., and Goodfellow, M. 2011. Detection, selective isolation and characterisation of Dactylosporangium strains from diverse environmental samples. Syst. Appl. Microbiol. 34, 606-616. https://doi.org/10.1016/j.syapm.2011.03.008
  24. Kim, S.H., Kwon, S.H., Park, S.H., Lee, J.K., Bang, H.S., Nam, S.J., Kwon, H.C., Shin, J., and Oh, D.C. 2013. Tripartin, a histone demethylase inhibitor from a bacterium associated with a dung beetle larva. Org. Lett. 15, 1834-1837. https://doi.org/10.1021/ol4004417
  25. Kim, B., Sahin, N., Minnikin, D.E., Zakrzewska-Czerwinska, J., Mordarski, M., and Goodfellow, M. 1999. Classification of thermophilic streptomycetes, including the description of Streptomyces thermoalcalitolerans sp. nov. Int. J. Syst. Bacteriol. 49 Pt 1, 7-17. https://doi.org/10.1099/00207713-49-1-7
  26. Kim, B.Y., Zucchi, T.D., Fiedler, H.-P., and Goodfellow, M. 2012. Streptomyces staurosporininus sp. nov., a staurosporine-producing actinomycete. Int. J. Syst. Evol. Microbiol. 62, 966-970. https://doi.org/10.1099/ijs.0.031922-0
  27. Kinkel, L.L., Schlatter, D.C., Bakker, M.G., and Arenz, B.E. 2012. Streptomyces competition and co-evolution in relation to plant disease suppression. Res. Microbiol. 163, 490-499. https://doi.org/10.1016/j.resmic.2012.07.005
  28. Mackay, S.J. 1977. Improved enumeration of Streptomyces spp. On a starch casein salt medium. Appl. Environ. Microbiol. 33, 227-230.
  29. Mccarthy, A.J. and Williams, S.T. 1992. Actinomycetes as agents of biodegradation in the environment - a review. Gene 115, 189-192. https://doi.org/10.1016/0378-1119(92)90558-7
  30. Morales, D.K., Ocampo, W., and Zambrano, M.M. 2007. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. J. Appl. Microbiol. 103, 2704-2712. https://doi.org/10.1111/j.1365-2672.2007.03510.x
  31. O'Brien, J. and Wright, G.D. 2011. An ecological perspective of microbial secondary metabolism. Curr. Opin. Biotechnol. 22, 552-558. https://doi.org/10.1016/j.copbio.2011.03.010
  32. Bérdy, J. 2005. Bioactive microbial metabolites: A personal view. J. Antibiot. (Tokyo). 58, 1-26. https://doi.org/10.1038/ja.2005.1
  33. Cazemier, A.E., Verdoes, J.C., Reubsaet, F.A., Hackstein, J.H., van der Drift, C., and Op den Camp, H.J. 2003. Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle pachnoda marginata. Antonie van Leeuwenhoek 83, 135-148. https://doi.org/10.1023/A:1023325817663
  34. Chaiyaso, T., Kuntiya, A., Techapun, C., Leksawasdi, N., Seesuriyachan, P., and Hanmoungjai, P. 2011. Optimization of cellulase-free xylanase production by thermophilic Streptomyces thermovulgaris TISTR1948 through plackett-burman and response surface methodological approaches. Biosci. Biotechnol. Biochem. 75, 531-537. https://doi.org/10.1271/bbb.100756
  35. Chen, J., Abawi, G.S., and Zuckerman, B.M. 2000. Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J. Nematol. 32, 70-77.
  36. Chung, M.Y., Kwon, E.Y., Hwang, J.S., Goo, T.W., and Yun, E.Y. 2013. Establishment of food processing methods for larvae of Allomyrina dichotoma, Korean horn beetle. J. Life Sci. 23, 426-431. https://doi.org/10.5352/JLS.2013.23.3.426
  37. Esnard, J., Potter, T.L., and Zuckerman, B.M. 1995. Streptomyces costaricanus sp. nov., isolated from nematode-suppressive soil. Int. J. Syst. Bacteriol. 45, 775-779. https://doi.org/10.1099/00207713-45-4-775
  38. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
  39. Goodfellow, M. 2010. Selective isolation of Actinobacteria, pp. 13-27. In Baltz, R.H., Demain, A.L., and Davies, J.E. (eds.), Manual of industrial microbiology and biotechnology ASM Press, Washington, D.C., USA.
  40. Goodfellow, M., Lacey, J., Athalye, M., Embley, T.M., and Bowen, T. 1989. Saccharopolyspora gregorii and Saccharopolyspora hordei: Two new actinomycete species from fodder. J. Gen. Microbiol. 135, 2125-2139.
  41. Goodfellow, M., Maldonado, L.A., and Quintana, E.T. 2005. Reclassification of Nonomuraea flexuosa (meyer 1989) Zhang et al. 1998 as Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 55, 1979-1983. https://doi.org/10.1099/ijs.0.63559-0
  42. Hayakawa, M. 2008. Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetol. 22, 12-19. https://doi.org/10.3209/saj.SAJ220103
  43. Hopwood, D.A. 2006. Soil to genomics: The Streptomyces chromosome. Annu. Rev. Genet. 40, 1-23. https://doi.org/10.1146/annurev.genet.40.110405.090639
  44. Antony-Babu, S., Stach, J., and Goodfellow, M. 2010. Computer-assisted numerical analysis of colour-group data for dereplication of streptomycetes for bioprospecting and ecological purposes. Antonie van Leeuwenhoek 97, 231-239. https://doi.org/10.1007/s10482-009-9404-x

Cited by

  1. Influence of rhinoceros beetle (Trypoxylus dichotomus septentrionalis) larvae and temperature on the soil bacterial community composition under laboratory conditions vol.108, 2017, https://doi.org/10.1016/j.soilbio.2016.12.005
  2. Phylogenetic characteristics of actinobacterial population in bamboo (Sasa borealis) soil vol.52, pp.1, 2016, https://doi.org/10.7845/kjm.2016.6006