DOI QR코드

DOI QR Code

CONFORMAL FIELD THEORY OF DIPOLAR SLE(4) WITH MIXED BOUNDARY CONDITION

  • Kang, Nam-Gyu (Department of Mathematical Sciences, Seoul National University)
  • Received : 2012.10.20
  • Published : 2013.07.01

Abstract

We develop a version of dipolar conformal field theory in a simply connected domain with the Dirichlet-Neumann boundary condition and central charge one. We prove that all correlation functions of the fields in the OPE family of Gaussian free field with a certain boundary value are martingale-observables for dipolar SLE(4).

Keywords

dipolar conformal field theory;martingale-observables;dipolar SLE

Acknowledgement

Supported by : NRF

References

  1. M. Bauer, D. Bernard, and J. Houdayer, Dipolar stochastic Loewner evolutions, J. Stat. Mech. Theory Exp. (2005), no. 3, P03001, 18 pp. (electronic).
  2. M. Bauer and D. Bernard, Conformal field theories of stochastic Loewner evolutions, Comm. Math. Phys. 239 (2003), no. 3, 493-521. https://doi.org/10.1007/s00220-003-0881-x
  3. M. Bauer and D. Bernard, CFTs of SLEs: the radial case, Phys. Lett. B 583 (2004), no. 3-4, 324-330. https://doi.org/10.1016/j.physletb.2004.01.028
  4. J. Cardy, Calogero-Sutherland model and bulk-boundary correlations in conformal field theory, Phys. Lett. B 582 (2004), no. 1-2, 121-126. https://doi.org/10.1016/j.physletb.2003.12.029
  5. N.-G. Kang and N. G. Makarov, Gaussian free field and conformal field theory, 2011. Preprint, arXiv:1101.1024.
  6. N.-G. Kang and N. G. Makarov, Radial SLE martingale-observables, 2012. Preprint, arXiv:1208.2789.
  7. N.-G. Kang and H.-J. Tak, Conformal field theory of dipolar SLE with the Dirichlet boundary condition, 2013. Preprint.
  8. I. Rushkin, E. Bettelheim, I. A. Gruzberg, and P. Wiegmann, Critical curves in conformally invariant statistical systems, J. Phys. A 40 (2007), no. 9, 2165-2195. https://doi.org/10.1088/1751-8113/40/9/020
  9. D. Zhan, Random Loewner Chains in Riemann Surfaces, 2004. Thesis (Ph.D.)-California Institute of Technology.

Cited by

  1. Slit Holomorphic Stochastic Flows and Gaussian Free Field vol.10, pp.7, 2016, https://doi.org/10.1007/s11785-016-0536-5