DOI QR코드

DOI QR Code

Studies of separation and quantitation for selenium species in food

식품중의 셀레늄 화학종의 분리 및 정량연구

  • Jang, Hee-Young (Department of Chemistry Education, Korea National University of Education) ;
  • Min, Hyungsik (Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science) ;
  • Lee, Jonghae (Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science) ;
  • Pak, Yong-Nam (Department of Chemistry Education, Korea National University of Education)
  • 장희영 (한국교원대학교 화학교육과) ;
  • 민형식 (한국표준과학연구원 삶의질 측정 표준본부) ;
  • 이종해 (한국표준과학연구원 삶의질 측정 표준본부) ;
  • 박용남 (한국교원대학교 화학교육과)
  • Received : 2013.03.06
  • Accepted : 2013.06.04
  • Published : 2013.06.25

Abstract

The purpose of this research is to separate and quantitate selenium species in some food samples with HPLC-ICP-MS. Cation exchange chromatography showed efficient separation only for inorganic Se species while reversed phase ion pair chromatography showed good separation for both inorganic and organic Se species. $C_8$ column ($Symmetryshield^{TM}\;RP_8$, 3.5 ${\mu}m$, $4.6{\times}150$ mm) was used with optimum condition of 5% methanol mobile phase, 0.05% of nonafluorovaleric acid ion pairing reagent. Five standard Se species of Se(IV), Se(VI), SeCys(selenocystein), SeMet(selenomethionine) and Se-M-C(seleno methyl cystein) were separated successfully under the optimum condition (mobile phase; 5% methanol, ion-pairing reagent; 0.05% nonafluorovaleric acid, flow rate; 0.9 mL $min^{-1}$). To extract Se species, microwave assisted and enzyme-assisted extraction methods were studied. In enzyme-assisted extraction method, protease I for garlic, protease I plus trypsin for pork and mackerel, and protease XIV for tuna showed the best extraction efficiency. With the optimum condition for each sample, it was found that mostly inorganic Se, SeCys and SeMet are present in the sample studied ranging from few ${\mu}g$ $g^{-1}$ to few tens of ${\mu}g$ $g^{-1}$.

본 연구에서는 HPLC-ICP-MS를 이용하여 여러 식품에 포함된 셀레늄의 화학종을 분리하고 정량 하였다. 양이온 교환 크로마토그래피를 사용할 때에 무기셀레늄 화학종의 분리는 효율적이나 유기셀레늄 화학종은 분리가 완전하지 못한 반면, 역상 이온쌍 크로마토그래피에서는 유기와 무기 셀레늄 화학종들을 모두 잘 분리 할 수 있었다. $C_8$ 컬럼($Symmetryshield^{TM}\;RP_8$, 3.5 ${\mu}m$, $4.6{\times}150$ mm)을 이용하여 최적조건(이동상; 5% 메탄올, ion-pairing reagent; 0.05% nonafluorovaleric acid, 흐름속도; 0.9 mL $min^{-1}$)하에서 표준물 Se(IV), Se(VI), SeCys (selenocystein), SeMet (selenomethionine), Se-M-C (seleno methyl cystein)를 성공적으로 분리하였다. 시료에서의 셀레늄화학종의 추출은 마이크로파를 이용한 추출과 효소(protease I, trypsin, protease XIV)를 이용한 추출을 사용하였는데 시료에 따라 서로 다른 효율과 결과를 보여주었다. 식물성 시료인 마늘 시료는 protease I, 동물성 시료인 돼지고기와 고등어 시료는 protease I + trypsin이 가장 효율적인 추출을 보여주었다. 각 시료의 최적 조건을 선택하여 셀레늄 화학종을 추출하고 분리 정량한 결과 이들에는 주로 무기 Se, SeCys, SeMet이 수 ${\mu}g$ $g^{-1}$ 내지 수 십 ${\mu}g$ $g^{-1}$ 수준으로 포함되어 있음을 알 수 있었다.

Acknowledgement

Supported by : 한국연구재단

References

  1. O. Wada, N. Kurihara and N. Yamazaki, Jpn. J. Nutr. Assess., 10, 199-210 (1993).
  2. J. L. Shisler, T. G. Senkevich, M. J. Berry and B. Moss, Science, 279, 102-105 (1998). https://doi.org/10.1126/science.279.5347.102
  3. J. Virtamo, E. Valkeila, G. Algrhan, S. Punsar, K. K. Huttnen and M. J. Karvonen, Cancer, 60, 145-148 (1987). https://doi.org/10.1002/1097-0142(19870715)60:2<145::AID-CNCR2820600203>3.0.CO;2-U
  4. K. Kose, P. Dogan and Y. Kardas, Biol. Trace Elem. Res., 53, 51-56 (1996). https://doi.org/10.1007/BF02784544
  5. O. A. Levander. Annu. Rev. Nutriti., 7, 227-250 (1987). https://doi.org/10.1146/annurev.nu.07.070187.001303
  6. J. Far, H. Preud'homme and R. Lobinski, Anal. Chim. Acta, 657, 175-190 (2010).
  7. M. Klein, L. Ouerdane, M. Bueno and F. Pannier, Metallomics, 3, 513-520 (2011). https://doi.org/10.1039/c0mt00060d
  8. J. M. Navarrete, L. C. Longoria, M. T. Martinez and L. Cabrera, J. Radioanal. Nucl. Chem., 271, 599-601 (2007). https://doi.org/10.1007/s10967-007-0313-z
  9. P. C. Uden, Anal. Bioanal. Chem., 373, 422-431 (2002). https://doi.org/10.1007/s00216-002-1405-9
  10. X. Dauchy, M. Potin-Gautier, A. Astruc and M. Astruc, Fresen. J. Anal. Chem., 348, 792 (1994). https://doi.org/10.1007/BF01780980
  11. H. Cho and Y. Pak, J. Kor. Chem. Soc., 55(3), 472-477 (2011). https://doi.org/10.5012/jkcs.2011.55.3.472
  12. T. D. Grant, M. Montes-Bayon, D. Leduc, M. W. Fricke, N. Terry and J. A. Caruso, J. Chromatogr. A, 1026, 159-166 (2004).
  13. S. Kokarnig, D. Kuehnelt, M. Stiboller, U. Hartleb and K. A. Francesconi, Anal. Bioanal. Chem., 400, 2323- 2327 (2011). https://doi.org/10.1007/s00216-011-4992-5
  14. Q. Chan, S. E. Afton and J. A. Caruso, J. Anal. Atom. Spectrom., 25, 186-192 (2010).
  15. Q. Chan, S. E. Afton and J. A. Caruso, Metallomics, 2, 147-153 (2010).
  16. C. B. Hymer and J. A. Caruso, J. Chromatogr. A, 1045, 1-13 (2004).
  17. A. Prange and D. Pofrock, Anal. Bioanal. Chem., 383, 372-389 (2005). https://doi.org/10.1007/s00216-005-3420-0
  18. T. DeSnaele, P. Verrept, L. Moens and R. Dams, Spectrochim. Acta. B, 50, 1409-1421 (1995). https://doi.org/10.1016/0584-8547(95)01351-6
  19. L. H. Reyes, F. M. Sanz, P. H. Espilez, J. M. Marchante- Gayon, J. I. G. Alonso and A. Sanz-Medel, J. Anal. Atom. Spectrom., 19, 1230-1238 (2004). https://doi.org/10.1039/b403662j
  20. Z. Pedrero, D. Elvira, C. Camara and Y. Madrid, Anal. Chim. Acta., 596, 251-256 (2007). https://doi.org/10.1016/j.aca.2007.05.067
  21. M. Kotrebai, M. Birringer, J. F. Tyson, E. Block and P. C. Uden, Analyst, 125, 71-78 (2000). https://doi.org/10.1039/a906320j
  22. M. Shah, S. S. Kannamkunarath, J. C. A. Wuilloud, R. G. Wuilloud and J. A. Caruso, J. Anal. Atom. Spectrom., 19, 381-387 (2004). https://doi.org/10.1039/b312320k
  23. C. Ip, M. Birringer, E. Block and M. Kotrebai, J. F. Tyson, P. C. Uden and D. J. Lisk, Agric. Food Chem., 48, 2062-2070 (2000). https://doi.org/10.1021/jf000051f
  24. C. Casiot, J. Szpunar, R. Lobinski and M. Potin-Gautier, J. Anal. Atom. Spectrom., 14, 645-652 (1999). https://doi.org/10.1039/a809027k
  25. J. K. Kirby, G. H. Lyons and M. P. Karkkainen, J. Agric. Food Chem., 56(5), 1772-1779 (2008). https://doi.org/10.1021/jf073030v
  26. S. G. Casal, J. Far, K. Bierla, L. Ouerdane and J. Szpunar, Metallomics, 2(8), 535-548 (2010).
  27. G. A. Zachariadis, D. C. Kapsimali and E. Rosenberg, Curr. Org. Chem., 14(19), 2282-2299 (2010).
  28. S. Cho, M. Kim, Y. Kim, Y. Min and Y. Kim, Anal. Science & Tech., 19(3), 203-210 (2006).
  29. O. Lee, Y. Jung and J. Moon, Korean J. Nutr., 43, 114-122 (2010).
  30. Y. Ham, B. Kim, Y. Kwon, H. Paik and S. Lee, Anal. Science & Tech., 24(3), 159-167 (2011). https://doi.org/10.5806/AST.2011.24.3.159
  31. S. Yoshida, M. Haratake, T. Fuchigami and M. Nakayama, J. Health Sci., 57, 215-224 (2011). https://doi.org/10.1248/jhs.57.215
  32. J. L. Guzma Mar, L. H. Reyes, G. M. M. Rahman and H. M. S. Kingston, J. Agric. Food Chem., 57, 3005-3013 (2009). https://doi.org/10.1021/jf803598k

Cited by

  1. A study of relationship between stomach cancer and selenoproteins in Korean human blood serum vol.28, pp.6, 2015, https://doi.org/10.5806/AST.2015.28.6.417
  2. Quantitative analysis of selenium species in sea food using solid phase extraction and HPLC-ICP/MS vol.26, pp.5, 2013, https://doi.org/10.5806/AST.2013.26.5.307
  3. Study of improving precision and accuracy by using an internal standard in post column isotope dilution method for HPLC-ICP/MS vol.27, pp.3, 2014, https://doi.org/10.5806/AST.2014.27.3.140
  4. Changes of Nutrient Composition and Retention Rate of Sweet Pepper by Different Types and Blanching Method vol.32, pp.4, 2016, https://doi.org/10.9724/kfcs.2016.32.4.433
  5. A short study of uncertainty for post column isotope dilution method in HPLC-ICP/MS vol.27, pp.6, 2014, https://doi.org/10.5806/AST.2014.27.6.269
  6. Quantification of seleno proteins in Korean blood serum using solid phase extraction and affinity chromatography-inductively coupled plasma/mass spectrometry vol.27, pp.2, 2014, https://doi.org/10.5806/AST.2014.27.2.92