DOI QR코드

DOI QR Code

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center) ;
  • Tachibana, Y. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center) ;
  • Ohashi, H. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center) ;
  • Sato, H. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center) ;
  • Tazawa, Y. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center) ;
  • Kunitomi, K. (Japan Atomic Energy Agency Nuclear Hydrogen and Heat Application Center)
  • Received : 2012.10.04
  • Accepted : 2012.11.29
  • Published : 2013.06.25

Abstract

HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

References

  1. K Onuki, S Kubo, A Terada, N Sakaba and R Hino. Thermochemical water-splitting cycle using iodine and sulfur. Energy Environ. Sci., 2009, 2, 491-497 https://doi.org/10.1039/b821113m
  2. K Onuki, S Kubo, J Iwatsuki, S Kasakara, N Tanaka, Y Imai, and H Noguchi, R&D on Thermochemical IS process for Nuclear Hydrogen Production at JAEA, Proc GLOBAL 2011, Chiba, Japan, Dec. 11-16, 2011, Paper No. 392206
  3. X. Yan, H. Sato, Y. Tachibana, K. Kunitomi, R. Hino, Evaluation of high temperature gas reactor for demanding cogeneration load follow, J. Nuclear Science and Technology, 49 (2012) 1, 121-131. https://doi.org/10.1080/18811248.2011.636564
  4. H. Sato, X. Yan, Y. Tachibana, Y. Kato. Assessment of load-following capability of VHTR cogeneration systems, Annals of Nuclear Energy, 49 (2012), 33-40. https://doi.org/10.1016/j.anucene.2012.05.019
  5. H. Sato. Safety and operability of high temperature gascooled reactor with power generation & hydrogen production systems, Ph.D. Thesis. 2012. Tokyo Institute of Technology, Japan.
  6. X. Yan, H. Noguchi, H. Sato, Y. Tachibana, K. Kunitomi, R. Hino. Study of an incrementally-loaded multistage flash desalination system for optimum use of sensible waste heat from nuclear power plant, submitted to Intl. J. of Energy Res., 2012.
  7. X. Yan, K. Kunitomi, T. Nakata, S. Shiozawa. Design and development of the GTHTR300. Nucl. Eng. Des., 222 (2003) 247-262 https://doi.org/10.1016/S0029-5493(03)00030-X
  8. X. Yan, T. Takizuka, K. Kunitomi, H. Itaka, K. Takahashi. Aerodynamic design, model test, and CFD analysis for a multistage axial helium compressor. J Turbomach 2008; 130(3): / 031018 https://doi.org/10.1115/1.2777190
  9. S. Takada, T. Takizuka, K. Kunitomi, S. Kosugiyama, X. Yan, I. Matsumoto. Program for tests on magnetic bearing suspended rotor dynamics for gas turbine high temperature reactor (GTHTR300). AESJ Trans 2003;2(4):525-31.
  10. S. Katanishi, K. Kunitomi. Safety evaluation on the pressurizaed accident in the gas turbine high temperature reactor (GTHTR300), Nucl. Eng. Des., 237 (2007) 1327-1380.
  11. M. Takei, S. Kosugiyama, T. Mouri, S. Katanishi, K. Kunitomi. Economical evaluation on gas turbine high temperature reactor 300 (GTHTR300), AESJ Trans 2006;5(2):109-117.
  12. T. Nakata, S. Katanishi, S. Takada, X. Yan, K. Kunitomi. Nuclear, thermal and hydraulic design for gas turbine high temperature reactor (GTHTR300), AESJ Trans 2003;2(4):478-89.
  13. S. Katanishi, K. Kunitomi, M. Takei, T. Nakata, T. Watanabe, T. Izumiya. Feasibility study on high burnup fuel for gas turbine high temperature reactor (GTHTR300) (I), AESJ Trans 2002;1(4):373-83.
  14. S. Katanishi, M. Takei, T. Nakata, K. Kunitomi, Feasibility study on high burnup fuel for gas turbine high temperature reactor (GTHTR300) (II), AESJ Trans 2004;3(1):67-75.
  15. X. Yan, et al., "GTHTR300 Design Variants for Production of Electricity, Hydrogen or Both," Proc. 3rd Information Exchange Meeting on Nuclear Production of Hydrogen, OECD Nuclear Energy Agency, Oarai Japan, 5-7 October 2005.
  16. K. Kunitomi, X. Yan, T. Nishihara, N. Sakaba, T. Mouri. JAEA's VHTR for hydrogen and electricity cogeneration: GTHTR300C. Nucl Eng Technol 39(1) (2007) 9-20. https://doi.org/10.5516/NET.2007.39.1.009
  17. T. Nishihara, K. Ohashi, T. Murakami, K. Kunitomi. Safety design philosophy of hydrogen cogeneration high temperature gas cooled reactor (GTHTR300C). AESJ Trans 2006;5(4):325-33.
  18. Xing Yan, S. Kasahara, Y. Tachibana, K. Kunitomi. Study of a nuclear energy supplied steelmaking system for nearterm application. Energy 39 (2012) 154-165. https://doi.org/10.1016/j.energy.2012.01.047
  19. X. Yan, H. Noguchi, H. Sato, Y. Tachibana, K. Kunitomi, R. Hino. Study of an HTGR system for power generation, desalination and other cogeneration applications in the Middle East. Proc. 6th International topical meeting on high temperature reactor technology HTR2012, Tokyo, Japan, Oct 28-Nov. 1, 2012. Paper HTR2012-2-004.
  20. K. Onuki, S. Kubo, N. Tanaka, and S. Kasahara, Thermochemical iodine-sulfur process. Chapter in Nuclear Hydrogen Production Handbook, (ed) Yan XL, Hino R, Florida, USA: CRC Press, 2011.
  21. S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, et al., A demonstration study on a closed-cycle hydrogen production by thermochemical water-splitting iodine-sulfur process. Nucl Eng Des 2004;233(1-3):347-54. https://doi.org/10.1016/j.nucengdes.2004.08.025
  22. International Energy Agency. 2011 Key World Energy Statistics. http://www.iea.org/textbase/nppdf/free/2011/key_world_energy_stats.pdf
  23. Generation-IV systems, Gen-IV international forum, http://www.gen-4.org/Technology/systems/index.htm; August 2012.
  24. A technology roadmap for generation IV nuclear energy systems. The U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002, http://www.gen-4.org/Technology/roadmap.htm; August 2012.
  25. Lohnert G.H. Technical design features and essential safety-related properties of the HTR-Module. Nuclear Engineering and Design 121 (1990) 259-275. https://doi.org/10.1016/0029-5493(90)90111-A
  26. Candeli R, Arndt E, Barnert H. Status of the high temperature reactor (HTR) - Applications. Nuclear Engineering and Design 121 (1990) 249-258. https://doi.org/10.1016/0029-5493(90)90110-J
  27. L M. Lidsky, D D. Lanning. J. E. Staudt and X. L Yan H. Kaburaki, M. Mori, A direct cycle gas turbine power plant for near-terÔm application: MGR-GT, Energy 16 (1991) 177-186. https://doi.org/10.1016/0360-5442(91)90099-8
  28. A.I. van Heek*, M.M. Stempniewicz, D.F. da Cruz, J.B.M. de Haas. ACACIA: a small-scale power plant for near term deployment in new markets. Nuclear Engineering and Design 234 (2004) 71-86. https://doi.org/10.1016/j.nucengdes.2004.08.021
  29. J. Chang, Y. W. Kim, K. Y. Lee, Y. W. Lee, W.J. Lee, J.M. Noh,M.H. Kim, H.S. Lim, Y.J. Shin, K.K. Bae and K.D. Jung. A study of a nuclear hydrogen production demonstration plant. Nuclear Engineering And Technology, Vol.39 No.2 April 2007 https://doi.org/10.5516/NET.2007.39.2.111
  30. M. Richards and A. Shenoy, "H2-MHR Pre-conceptual Design Summary," Nucl. Eng. and Technology, 39(1), 2007.2. https://doi.org/10.5516/NET.2007.39.1.001
  31. I. Minatsuki, M. Tanihira, Y. Mizokami, Y. Miyoshi, H. Hayakawa, etc. The role of Japan's industry in the HTTR design and its construction, Nuclear Eng. Des. 233 (2004) 377-390. https://doi.org/10.1016/j.nucengdes.2004.08.033
  32. S. Saito, T. Tanaka, Y. Sudo, O. Baba, M. Shindo, et al., Design of High Temperature Engineering Test Reactor (HTTR), JAERI 1332, 1994.
  33. S. Shiozawa, S. Fujikawa, T. Iyoku, K. Kunitomi, Y. Tachibana. Overview of HTTR design features. Nucl. Eng. Des. 233 (2004) 11-21. https://doi.org/10.1016/j.nucengdes.2004.07.016
  34. S. Fujikawa, H. Hayashi, T. Nakazawa, K. Kawasaki, T. Iyoku, S. Nakagawa, et al., Achievement of reactor-outlet coolant temperature of 950oC in HTTR. J Nucl Sci Technol 2004;41(12):1245-54. https://doi.org/10.1080/18811248.2004.9726354
  35. K. Takamatsu. High temperature continuous operation in the HTTR (HP-11) - Summary of the test results in the high temperature operation mode. JAEA-Research 2010-038, 2010.
  36. K. Takamatsu, X. Yan, S. Nakagawa, N. Sakaba, K. Kunitomi. Loss of Forced Cooling Test for HTGRs with Inherent Safety Features, Proc. 6th International topical meeting on high temperature reactor technology HTR2012, Tokyo, Japan, Oct 28-Nov. 1, 2012. Paper HTR2012-5-020.

Cited by

  1. Improved Interpretation of Mercury Intrusion and Soil Water Retention Percolation Characteristics by Inverse Modelling and Void Cluster Analysis vol.124, pp.2, 2018, https://doi.org/10.1007/s11242-018-1087-1