DOI QR코드

DOI QR Code

IRRADIATION EFFECTS OF HT-9 MARTENSITIC STEEL

  • Chen, Yiren (Nuclear Engineering Division, Argonne National Laboratory)
  • Received : 2013.05.21
  • Published : 2013.06.25

Abstract

High-Cr martensitic steel HT-9 is one of the candidate materials for advanced nuclear energy systems. Thanks to its excellent thermal conductivity and irradiation resistance, ferritic/martensitic steels such as HT-9 are considered for in-core applications of advanced nuclear reactors. The harsh neutron irradiation environments at the reactor core region pose a unique challenge for structural and cladding materials. Microstructural and microchemical changes resulting from displacement damage are anticipated for structural materials after prolonged neutron exposure. Consequently, various irradiation effects on the service performance of in-core materials need to be understood. In this work, the fundamentals of radiation damage and irradiation effects of the HT-9 martensitic steel are reviewed. The objective of this paper is to provide a background introduction of displacement damage, microstructural evolution, and subsequent effects on mechanical properties of the HT-9 martensitic steel under neutron irradiations. Mechanical test results of the irradiated HT-9 steel obtained from previous fast reactor and fusion programs are summarized along with the information of irradiated microstructure. This review can serve as a starting point for additional investigations on the in-core applications of ferritic/martensitic steels in advanced nuclear reactors.

Acknowledgement

Supported by : U.S. Department of Energy

References

  1. Toloczko, M. B., D. S. Gelles, F. A. Garner, R. J. Kurtz, K. Abe, "Irradiation creep and swelling from 400 to $600^{\circ}C$ of the oxide dispersion strengthened ferritic alloy MA957", J. Nucl. Mater. 329-333 (2004) 352. https://doi.org/10.1016/j.jnucmat.2004.04.296
  2. Grossbeck, M. L., L. T. Gibson, S. Jitsukawa, "Irradiation creep in austenitic and ferritic steels irradiated in a tailored neutron spectrum to induce fusion reactor levels of helium"J. Nucl. Mater. 233-237 (1996) 148. https://doi.org/10.1016/S0022-3115(96)00205-X
  3. James, L. A., "Fatigue-Crack Propagation Behavior of HT-9 Steel," J. Nucl. Mater., 149(1987):138-142. https://doi.org/10.1016/0022-3115(87)90471-5
  4. Grossbeck, M. L., Vitek, J. M., and Liu, K. C., "Fatigue Behavior of Irradiated Helium-Containing Ferritic Steels for Fusion Reactor Applications" J. Nucl. Mater., Vol. 141-143, 1986, pp. 966-972. https://doi.org/10.1016/0022-3115(86)90126-1
  5. Byun, T. S., W. Ds. Lewis, M. B. Toloczko, S. A. Maloy, "Impact properties of irradiated HT9 from the fuel duct of FFTF," J. Nucl. Mater., 421(2012):104:111. https://doi.org/10.1016/j.jnucmat.2011.11.059
  6. Huang, F. and M. L. Hamilton, "The fracture toughness database of ferritic alloys irradiated to very high neutron exposure", J. Nucl. Mater. 187 (1992) 278 https://doi.org/10.1016/0022-3115(92)90508-I
  7. Byun, T. S., M. B. Toloczko, T. A. Saleh, S. A. Maloy, "Irradiation dose and temperature dependence of fracture toughness in high dose HT9 steel from the fuel duct of FFTF," J. Nucl. Mater., 432(2013): 1-8. https://doi.org/10.1016/j.jnucmat.2012.07.019
  8. Klueh, R.L., N. Hashimoto, M.A., Sokolov, K. Shiba, S. Jitsukawa, "Mechanical properties of neutron-irradiated nickel-containing martensitic steels: I. Experimental study", 357 (2006) 156-168. https://doi.org/10.1016/j.jnucmat.2006.05.048
  9. Klueh, R.L., N. Hashimoto, M.A., Sokolov, P.J. Maziasz, K. Shiba, S. Jitsukawa, "Mechanical properties of neutron-irradiated nickel-containing martensitic steels: II. Review and analysis of helium-effect studies", J. Nucl. Mater, 357 (2006) 169-182. https://doi.org/10.1016/j.jnucmat.2006.05.049
  10. Rowcliffe, A.F., J.P. Robertson, R.L. Klueh, K. Shiba, D. J. Alexander, M. L. Grossbeck and S. Jitsukawa, "Fracture toughness and tensile behavior of ferritic-martensitic steels irradiated at low temperatures", J. Nucl. Mater. 258-263 (1998) 1275. https://doi.org/10.1016/S0022-3115(98)00163-9
  11. Maloy, S.A., M. B. Tolocako, K.J. McClellan, T. Romero, Y. Kohno, F.A. Garner, R.J. Kurtz and A. Kimura, "The effects of fast reactor irradiation conditions on the tensile properties of two ferritic/martensitic steels", J. Nucl. Mater. 356 (2006) 62. https://doi.org/10.1016/j.jnucmat.2006.05.024
  12. Klueh, R. L., "Irradiation Effects on Tensile Properties of High-Chromium Ferritic/Martensitic Steels," DOE/ER-0313/35 - Vol. 35, Semiannual Progress Report, Dec. 31, 2003, pp.73-79.
  13. Robertson, J.P., R.L. Klueh, K. Shiba and A.F. Rowcliffe, "Radiation hardening and deformation behavior of irradiated ferritic-martensitic Cr-steels", in Fusion Materials Semi ann. Prog. Report for period ending Dec. 31 1997, DOE/ER-0313/23, Oak Ridge National Lab, 1997, pp. 179-187.
  14. Maloy, S. A., M. Toloczko, J. Cole, T. S. Byun, "Core materials development for the fue cycle R&D program," J. Nucl. Mater. 415 (2011) 302-305. https://doi.org/10.1016/j.jnucmat.2011.04.027
  15. Bullough, R., and M.R. Hayns, "The temperature dependence of irradiation creep," J. Nucl. Mater., 65 (1977): 184-191 https://doi.org/10.1016/0022-3115(77)90054-X
  16. Wolfer, W. G., "Correlation of radiation creep theory with experimental evidence," J. Nucl. Mater., 90 (1980): 175-192 https://doi.org/10.1016/0022-3115(80)90255-X
  17. Woo, C. H., and F.A. Garner, "A SIPA-based theory of irradiation creep in the low swelling rate regime," J. Nucl. Mater., 191-194 (1992): 1309-1312. https://doi.org/10.1016/0022-3115(92)90686-F
  18. Woo, C. H., B.N. Singh, and A.A. Semenov, "Recent advances in the understanding of damage production and its consequences on void swelling, irradiation creep and growth," J. Nucl. Mater., 239 (1996): 7-23. https://doi.org/10.1016/S0022-3115(96)00482-5
  19. Boltax, A., J.P. Foster, R.A. Weiner, A. Biancheria, "Void swelling and irradiation creep relationships," J. Nucl. Mater., 65(1977): 174-183 https://doi.org/10.1016/0022-3115(77)90053-8
  20. Garner, F. A., "Irradiation Performance of Cladding and Structural Steels in Liquid Metal Reactors," Materials Science and Technology - A Comprehensive Treatment, Ed. R.W. Cahn, P. Haasen, E. J. Kramer, 1994.
  21. Paxton, M. M., B. A. Chin, E. R. Gilbert, R. E. Nygren, "Comparison of the in-reactor creep of selected ferritic, solid solution strengthened, and precipitation hardened commercial alloys", J. Nucl. Mater. 80 (1979) 144. https://doi.org/10.1016/0022-3115(79)90230-7
  22. Paxton, M. M., B. A. Chin, E. R. Gilbert, "The in-reactor creep of selected ferritic, solid solution strengthened, and precipitation hardened alloys", J. Nucl. Mater. 95 (1980) 185. https://doi.org/10.1016/0022-3115(80)90093-8
  23. Chin, B. A., in Topical Conference on Ferritic Steels for Use in Nuclear Energy Technologies, Eds. J. W. Davis, D. J. Michel (The Metallurgical Society of AIME, Warrendale, PA, 1984) 593.
  24. Toloczko, M. B., F. A. Garner, "Stress and temperature dependence of irradiation creep of selected FCC and BCC steels at low swelling" Fusion Materials Program Semiannula Progress Report, (2002) p. 73.
  25. Wollenberger, H., "Phase transformation under irradiation", J. Nucl. Mater., 216 (1994) pp. 63-77 https://doi.org/10.1016/0022-3115(94)90007-8
  26. Okamoto, P.R. and L.E. Rehn, "Radiation-induced segregation in binary and ternary alloys", J. Nucl. Mater., 83 (1979) pp.2-23 https://doi.org/10.1016/0022-3115(79)90587-7
  27. Was, G. S., J. P. Wharry, B. Frisbie, B. D. Wirth, D. Morgan, J. D. Tucker, and T. R. Allen, "Assessment of radiationinduced segregation mechanisms in austenitic and ferritic-martensitic alloys," Journal of Nuclear Materials 411, no. 1 (2011): 41-50. https://doi.org/10.1016/j.jnucmat.2011.01.031
  28. Wong, K. L., J. H. Shim, and B. D. Wirth, "Molecular dynamics simulations of point defect interactions in Fe-Cr alloys," Journal of nuclear materials 367 (2007): 276-281.
  29. Maziasz, P.J., "Formation and stability of radiation-induced phases in neutron-irradiated austenitic and ferritic steels", J. Nulc. Mater., 169 (1989) pp.95-115 https://doi.org/10.1016/0022-3115(89)90525-4
  30. Klueh, R.L. and D.R. Harries, "High-Chromium Ferritic and Martensitic Steels for Nuclear Applicaitons", ASTM, West Conshohocken, PA.
  31. Maziasz, P.J., R.L. Klueh and J.M. Vitek, "Helium effects on void formation in 9Cr-1MoVNb and 12Cr-1MoVW irradiated in HFIR", J. Nucl. Mater., 141-143 (1986) pp. 929-937 https://doi.org/10.1016/0022-3115(86)90120-0
  32. Anderoglu, O., J. Van den Bosch, P. Hosemann, E. Stergar, B. H. Sencer, D. Bhattacharyya, R. Dickerson, P. Dickerson, M. Hartl, and S. A. Maloy, "Phase stability of an HT-9 duct irradiated in FFTF," Journal of Nuclear Materials, 430 (2012): 194-204. https://doi.org/10.1016/j.jnucmat.2012.06.038
  33. Gelles, D. S., L. E. Thomas, "Effects of neutron irradiation on microstructure in experimental and commercial ferritic alloys," Ferritic Alloys for Use in Nuclear Energy Technologies, Eds, J. W. Davis, and D. J. Michel, Met. Soc. AIME, 1984, 559.
  34. Maziasz, P. J., Materials for Nuclear Reactor Core Applications, Vol. 2, British Nuclear Energy Society, 1988, 61.
  35. Hirth, J. P. and J. Lothe, Theory of Dislocations, 2nd Ed., Krieger Publishing Company, Malabar, Florida, 1992.
  36. Heald, P. T., "Preferential Trapping of Interstitials at Dislocations," Phil. Mag., 31, 3 (1975) 551. https://doi.org/10.1080/14786437508226537
  37. Gittus, J., Irradiation effects in crystalline solids, Applied Science Publishers LTD., London, 1978.
  38. Toloczko, M.B. and F.A. Garner, "Irradiation creep and void swelling of two LMR heats of HT9 at ${\sim}400^{\circ}C$ and 165 dpa", J. Nucl. Mater., 233-237 (1996) 289-292. https://doi.org/10.1016/S0022-3115(96)00413-8
  39. Garner, F. A., M. B. Toloczko, B. H. Sencer, "Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure", J. Nucl. Mater. 276 (2000) 123. https://doi.org/10.1016/S0022-3115(99)00225-1
  40. Toloczko, M. B., F. A. Garner, C. R. Eiholzer, "Irradiation creep and swelling of the US fusion heats of HT9 and 9Cr-1Mo to 208 dpa at ${\sim}400^{\circ}C$" J. Nucl. Mater. 212-215 (1994) 604. https://doi.org/10.1016/0022-3115(94)90131-7
  41. Toloczko, M. B., F. A. Garner, C. R. Eiholzer, "Irradiation creep of various ferritic alloys irradiated at ${\sim}400^{\circ}C$ in the PFR and FFTF reactors" J. Nucl. Mater. 258-263 (1998) 1163. https://doi.org/10.1016/S0022-3115(98)00165-2
  42. Dubuisson, P., D. Gilbon and J. L. Seran, "Microstructural evolution of ferritic-martensitic steels irradiated in the fast breeder reactor Phenix", J. Nucl. Mater., 205 (1993) 178-189 https://doi.org/10.1016/0022-3115(93)90080-I
  43. Kluek, R.L., "Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors", International Materials reviews, Vol. 50, No.5, 2005, pp287- 310. https://doi.org/10.1179/174328005X41140
  44. Stiegler, J. O. and L.K. Mansur, Ann. Rev. Mater. Sci., "Radiation effects in structural materials", 1979. 9. pp.405-454
  45. Gelles, D. S., "Effects of irradiation on low activation ferritic alloys: a review," Reduced Activation Materials for Fusion Reactors, R. L. Klueh, D. S. Gelles, M. Okada, and N. H. Packin, Eds., Amer. Soc. for Testing and Materials, Philadelphia (1990): 113.
  46. Grossbeck, M. L., L. K. Mansur, "Low-temperature irradiation creep of fusion reactor structural materials" J. Nucl. Mater. 179-181 (1991): 130. https://doi.org/10.1016/0022-3115(91)90027-5
  47. Strang, A., and V. Vodarek, "The effects of microstructural stability on the creep properties of high temperature martensitic 12 Cr steels," 7th International Conference on Creep and Fracture of Engineering Materials and Structures, 1997.
  48. Masuyama, F., "History of power plants and progress in heat resistant steels," ISIJ internaltional, 41.6 (2001): 621-625.
  49. Robinson, M.T., "Basic physics of radiation damage production", J. Nucl. Mater., 216(1994): 1-28. https://doi.org/10.1016/0022-3115(94)90003-5
  50. Greenwood, L. R., "Neutron Interactions and Atomic Recoil Spectra," J. Nucl. Mater., 216 (1994): 29-44 https://doi.org/10.1016/0022-3115(94)90004-3
  51. Averback, A.S., "Atomic displacement processes in irradiated metals", J. Nucl. Mater., 216(1994): 49-62 https://doi.org/10.1016/0022-3115(94)90006-X
  52. Norgett, M.J., M.T. Robinson and I.M. Torrens, "A proposed method of calculating displacement dose rates", Nuclear Engineering and Design, 33 (1975) pp. 50-54 https://doi.org/10.1016/0029-5493(75)90035-7
  53. Mansure, L.K., "Theory and experimental background on dimensional changes in irradiated alloys", 216 (1994): 97-123. https://doi.org/10.1016/0022-3115(94)90009-4
  54. Jenkins, M.L., "Characterization of radiation-damage microstructures by TEM", J. Nucl. Mater., 216 (1994):124-156 https://doi.org/10.1016/0022-3115(94)90010-8
  55. Eyre, B. L., A. F. Bartlett, "An Electron Microscope Study of Neutron Irradiation Damage in Alpha-iron," Phil. Mag., 12,116 (1965):261 https://doi.org/10.1080/14786436508218869
  56. Hashimoto, N., J. P. Robertson, and K. Shiba, "Microstructure of Isotopically-tailored Martensitic steel HT9 Irradiated at 400C to 7 dpa in HFIR," DOE/ER-0313/26 - Vol. 26, Semiannual Progress Report, June 30, 1999, pp.96-101.
  57. Kai, J.J. and R.L. Klueh, "Microstructural analysis of neutronirradiated martensitic steels", J. Nucl. Mater., 230(1996) pp. 116-123 https://doi.org/10.1016/0022-3115(96)00165-1
  58. Sencer, B.H., J.R. Kennedy, J.I. Cole, S.A. Maloy, F.A. Garner, "Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at $443^{\circ}C$," J. of Nucl. Mater., 393(2) (2009): 235-241. https://doi.org/10.1016/j.jnucmat.2009.06.010
  59. Kai, J.J. and G.L. Kulcinshi, "14 MeV nickel-ion irradiated HT-9 ferritic steel with and without helium pre-implantation", J. Nucl. Mater., 175 (1990) pp. 227-236 https://doi.org/10.1016/0022-3115(90)90211-5
  60. Kalwa, G., K. Haarmann, and J.K. Janssen, in: Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, Eds. J.W Davis and D.J. Michel (Met Soc. AIME, Warrendale, PA, 1984) 235.
  61. Klueh, R.L. and D.J. Alexander, "Heat treatment effects on impact toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated to 100 dpa", J. Nucl. Mater., 253-258(1998) 1269-1274.
  62. Gelles, D. S., "Development of Martensitic Steels for High Neutron Damage Applications," J. Nucl. Mater., 239 (1996): 99-106. https://doi.org/10.1016/S0022-3115(96)00474-6
  63. Ghoniem, N. M., J. Blink, and N. Hoffman, "Selection of alloy steel type for fusion power plant applications in the 350-500C range," Proc. of the Topical Conf. on Ferritic Alloys for Use in Nuclear Technology, Snowbird, Utah. 1983.
  64. Gilbon, D. and C. Rivera, "Behavior of different ferritic steels under ion, electron and fast neutron irradiation", J. Nucl. Mater., 155-157 (1988) pp.1268-1273 https://doi.org/10.1016/0022-3115(88)90509-0
  65. Allen, T. R, J. T. Busby, R. L. Klueh, S. A. Maloy, and M. B. Toloczko, "Cladding and duct materials for advanced nuclear recycle reactors," JOM 60, no. 1 (2008): 15-23. https://doi.org/10.1007/s11837-008-0002-6
  66. Garner, F.A. and R.J. Puigh, "Irradiation creep and swelling of the fusion heats of PCA, HT9 and 9Cr-1Mo irradiated to high neutron fluence", J. Nucl. Mater., 179-181 (1991) 577-580. https://doi.org/10.1016/0022-3115(91)90153-X

Cited by

  1. Design study of long-life small modular sodium-cooled fast reactor vol.41, pp.1, 2016, https://doi.org/10.1002/er.3609
  2. The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper vol.9, pp.3, 2016, https://doi.org/10.3390/ma9030144
  3. Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation vol.23, pp.6, 2017, https://doi.org/10.1007/s12540-017-7141-7
  4. Formation and evolution of precipitates in high Cr ferritic heat-resistant steels vol.19, pp.sup4, 2015, https://doi.org/10.1179/1432891715Z.0000000001543
  5. Core design of long-cycle small modular lead-cooled fast reactor pp.0363907X, 2018, https://doi.org/10.1002/er.4258
  6. Anisotropic Radiation-Induced Changes in Type 316L Stainless Steel Rods Built by Laser Additive Manufacturing pp.1943-7471, 2018, https://doi.org/10.1080/00295450.2018.1502001
  7. Proton Irradiation Induced Hardening and Its Recovery During Healing Treatment of Modified 9Cr–1Mo Steel vol.71, pp.9, 2018, https://doi.org/10.1007/s12666-018-1361-5
  8. Reducing Irradiation Damage in a Long-Life Fast Reactor with Spectral Softening vol.11, pp.6, 2018, https://doi.org/10.3390/en11061507