DOI QR코드

DOI QR Code

Brain-Computer Interface in Stroke Rehabilitation

  • Ang, Kai Keng (Institute for Infocomm and Research, Agency of Science, Technology and Research (A*STAR)) ;
  • Guan, Cuntai (Institute for Infocomm and Research, Agency of Science, Technology and Research (A*STAR))
  • Received : 2013.05.06
  • Accepted : 2013.05.15
  • Published : 2013.06.30

Abstract

Recent advances in computer science enabled people with severe motor disabilities to use brain-computer interfaces (BCI) for communication, control, and even to restore their motor disabilities. This paper reviews the most recent works of BCI in stroke rehabilitation with a focus on methodology that reported on data collected from stroke patients and clinical studies that reported on the motor improvements of stroke patients. Both types of studies are important as the former advances the technology of BCI for stroke, and the latter demonstrates the clinical efficacy of BCI in stroke. Finally some challenges are discussed.

Keywords

References

  1. R. Bene, N. Beck, B. Vajda, S. Popovic, K. Cosic, and V. Demarin, "Interface providers in stroke neurorehabilitation," Periodicum Biologorum, vol. 114, no. 3, pp. 403-407, 2012.
  2. V. L. Feigin, C. M. M. Lawes, D. A. Bennett, S. L. Barker-Collo, and V. Parag, "Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review," Lancet Neurology, vol. 8, no. 4, pp. 355-369, 2009. https://doi.org/10.1016/S1474-4422(09)70025-0
  3. P. W. Duncan, L. B. Goldstein, D. Matchar, G. W. Divine, and J. Feussner, "Measurement of motor recovery after stroke: outcome assessment and sample size requirements," Stroke, vol. 23, no. 8, pp. 1084-1089, 1992.
  4. C. Calautti and J. C. Baron, "Functional neuroimaging studies of motor recovery after stroke in adults: a review," Stroke, vol. 34, no. 6, pp. 1553-1566, 2003. https://doi.org/10.1161/01.STR.0000071761.36075.A6
  5. J. C. Grotta, E. A. Noser, T. Ro, C. Boake, H. Levin, J. Aronowski, and T. Schallert, "Constraint-induced movement therapy," Stroke, vol. 35, no. 11 (suppl 1), pp. 2699-2701, 2004. https://doi.org/10.1161/01.STR.0000143320.64953.c4
  6. N. Sharma, V. M. Pomeroy, and J. C. Baron, "Motor imagery: a backdoor to the motor system after stroke?," Stroke, vol. 37, no. 7, pp. 1941-1952, 2006. https://doi.org/10.1161/01.STR.0000226902.43357.fc
  7. A. P. Georgopoulos, J. T. Lurito, M. Petrides, A. B. Schwartz, and J. T. Massey, "Mental rotation of the neuronal population vector," Science, vol. 243, no. 4888, pp. 234-236, 1989. https://doi.org/10.1126/science.2911737
  8. N. Sharma, L. H. Simmons, P. S. Jones, D. J. Day, T. A. Carpenter, V. M. Pomeroy, E. A. Warburton, and J. C. Baron, "Motor imagery after subcortical stroke: a functional magnetic resonance imaging study," Stroke, vol. 40, no. 4, pp. 1315-1324, 2009. https://doi.org/10.1161/STROKEAHA.108.525766
  9. S. H. Johnson, "Imagining the impossible: intact motor representations in hemiplegics," NeuroReport, vol. 11, no. 4, pp. 729-732, 2000. https://doi.org/10.1097/00001756-200003200-00015
  10. S. H. Johnson, G. Sprehn, and A. J. Saykin, "Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations," Journal of Cognitive Neuroscience, vol. 14, no. 6, pp. 841-852, 2002. https://doi.org/10.1162/089892902760191072
  11. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, "Brain-computer interfaces for communication and control," Clinical Neurophysiology, vol. 113, no. 6, pp. 767-791, 2002. https://doi.org/10.1016/S1388-2457(02)00057-3
  12. J. J. Daly and J. R. Wolpaw, "Brain-computer interfaces in neurological rehabilitation," Lancet Neurology, vol. 7, no. 11, pp. 1032-1043, 2008.
  13. J. J. Shih, D. J. Krusienski, and J. R. Wolpaw, "Brain-computer interfaces in medicine," Mayo Clinic Proceedings, vol. 87, no. 3, pp. 268-279, 2012. https://doi.org/10.1016/j.mayocp.2011.12.008
  14. P. L. Jackson, M. F. Lafleur, F. Malouin, C. Richards, and J. Doyon, "Potential role of mental practice using motor imagery in neurologic rehabilitation," Archives of Physical Medicine and Rehabilitation, vol. 82, no. 8, pp. 1133-1141, 2001. https://doi.org/10.1053/apmr.2001.24286
  15. L. F. Nicolas-Alonso and J. Gomez-Gil, "Brain computer interfaces: a review," Sensors, vol. 12, no. 2, pp. 1211-1279, 2012. https://doi.org/10.3390/s120201211
  16. S. Silvoni, A. Ramos-Murguialday, M. Cavinato, C. Volpato, G. Cisotto, A. Turolla, F. Piccione, and N. Birbaumer, "Brain-computer interface in stroke: a review of progress," Clinical EEG and Neuroscience, vol. 42, no. 4, pp. 245-252, 2011. https://doi.org/10.1177/155005941104200410
  17. S. Bonnie and R. Martin, "Understanding controlled trials: Why are randomised controlled trials important?," British Medical Journal, vol. 316, no. 7126, p. 201, 1998. https://doi.org/10.1136/bmj.316.7126.201
  18. G. Pfurtscheller, G. R. Muller, J. Pfurtscheller, H. J. Gerner, and R. Rupp, "'Thought': control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia," Neuroscience Letters, vol. 351, no. 1, pp. 33-36, 2003. https://doi.org/10.1016/S0304-3940(03)00947-9
  19. A. Mohapp, R. Scherer, C. Keinrath, P. Grieshofer, G. Pfurtscheller, and C. Neuper, "Single-trial EEG classification of executed and imagined hand movements in hemiparetic stroke patients," in Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course, Graz, Austria, 2006, pp. 80-81.
  20. O. Bai, P. Lin, S. Vorbach, M. K. Floeter, N. Hattori, and M. Hallett, "A high performance sensorimotor beta rhythmbased brain-computer interface associated with human natural motor behavior," Journal of Neural Engineering, vol. 5, no. 1, pp. 24-35, 2008. https://doi.org/10.1088/1741-2560/5/1/003
  21. A. Biasiucci, R. Chavarriaga, B. Hamner, R. Leeb, F. Pichiorri, F. De Vico Fallani, D. Mattia, and J. R. del Millan, "Combining discriminant and topographic information in BCI: preliminary results on stroke patients," in Proceedings of the 5th International IEEE/EMBS Conference on Neural Engineering, Cancun, Mexico, 2011, pp. 290-293.
  22. M. Gomez-Rodriguez, J. Peters, J. Hill, B. Schölkopf, A. Gharabaghi, and M. Grosse-Wentrup, "Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery," Journal of Neural Engineering, vol. 8, no. 3, p. 036005, 2011. https://doi.org/10.1088/1741-2560/8/3/036005
  23. I. K. Niazi, N. Jiang, O. Tiberghien, J. F. Nielsen, K. Dremstrup, and D. Farina, "Detection of movement intention from single-trial movement-related cortical potentials," Journal of Neural Engineering, vol. 8, no. 6, p. 066009, 2011. https://doi.org/10.1088/1741-2560/8/6/066009
  24. W. K. Tam, K. Y. Tong, F. Meng, and S. K. Gao, "A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: a multi-session study," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 6, pp. 617-627, 2011. https://doi.org/10.1109/TNSRE.2011.2168542
  25. M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, "Robust EEG channel selection across sessions in brain-computer interface involving stroke patients," in Proceedings of the IEEE International Joint Conference on Neural Networks, Brisbane, Australia, 2012, pp. 2319-2324.
  26. M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, "Omitting the intra-session calibration in EEG-based brain computer interface used for stroke rehabilitation," in Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, 2012, pp. 4124-4127.
  27. D. T. Bundy, M. Wronkiewicz, M. Sharma, D. W. Moran, M. Corbetta, and E. C. Leuthardt, "Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain-computer interfaces in hemiplegic stroke survivors," Journal of Neural Engineering, vol. 9, no. 3, p. 036011, 2012. https://doi.org/10.1088/1741-2560/9/3/036011
  28. F. Cincotti, F. Pichiorri, P. Arico, F. Aloise, F. Leotta, F. D. Fallani, J. D. Millan, M. Molinari, and D. Mattia, "EEGbased brain-computer interface to support post-stroke motor rehabilitation of the upper limb," in Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, 2012, pp. 4112-4115.
  29. A. Frisoli, C. Loconsole, D. Leonardis, F. Banno, M. Barsotti, C. Chisari, and M. Bergamasco, "A new gaze-BCIdriven control of an upper limb exoskeleton for rehabilitation in real-world tasks," IEEE Transactions on Systems Man and Cybernetics Part C, vol. 42, no. 6, pp. 1169-1179, 2012. https://doi.org/10.1109/TSMCC.2012.2226444
  30. V. Kaiser, I. Daly, F. Pichiorri, D. Mattia, G. R. Muller-Putz, and C. Neuper, "Relationship between electrical brain responses to motor imagery and motor impairment in stroke," Stroke, vol. 43, no. 10, pp. 2735-2740, 2012. https://doi.org/10.1161/STROKEAHA.112.665489
  31. M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, "Optimizing spatial filters by minimizing within-class dissimilarities in electroencephalogram-based brain-computer interface,"IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 4, pp. 610-619, 2013.
  32. M. Naeem, C. Brunner, R. Leeb, B. Graimann, and G. Pfurtscheller, "Seperability of four-class motor imagery data using independent components analysis," Journal of Neural Engineering, vol. 3, no. 3, pp. 208-216, 2006. https://doi.org/10.1088/1741-2560/3/3/003
  33. E. Buch, C. Weber, L. G. Cohen, C. Braun, M. A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, and N. Birbaumer, "Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke," Stroke, vol. 39, no. 3, pp. 910-917, 2008.
  34. K. K. Ang, C. Guan, K. S. G. Chua, B. T. Ang, C. W. K. Kuah, C. Wang, K. S. Phua, Z. Y. Chin, and H. Zhang, "A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation," in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, 2009, pp. 5981-5984.
  35. A. R. Fugl-Meyer, L. Jaasko, I. Leyman, S. Olsson, and S. Steglind, "The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance," Scandinavian Journal of Rehabilitation Medicine, vol. 7, no. 1, pp. 13-31, 1975.
  36. J. J. Daly, R. Cheng, J. Rogers, K. Litinas, K. Hrovat, and M. Dohring, "Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke," Journal of Neurologic Physical Therapy, vol. 33, no. 4, pp. 203-211, 2009. https://doi.org/10.1097/NPT.0b013e3181c1fc0b
  37. K. K. Ang, C. Guan, K. S. G. Chua, B. T. Ang, C. W. K. Kuah, C. Wang, K. S. Phua, Z. Y. Chin, and H. Zhang, "Clinical study of neurorehabilitation in stroke using EEGbased motor imagery brain-computer interface with robotic feedback," in Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 2010, pp. 5549-5552.
  38. D. Broetz, C. Braun, C. Weber, S. R. Soekadar, A. Caria, and N. Birbaumer, "Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report," Neurorehabilitation and Neural Repair, vol. 24, no. 7, pp. 674-679, 2010. https://doi.org/10.1177/1545968310368683
  39. G. Prasad, P. Herman, D. Coyle, S. McDonough, and J. Crosbie, "Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study," Journal of Neuroengineering and Rehabilitation, vol. 7, no. 1, p. 60, 2010. https://doi.org/10.1186/1743-0003-7-60
  40. K. K. Ang, C. Guan, K. S. G. Chua, B. T. Ang, C. W. K. Kuah, C. Wang, K. S. Phua, Z. Y. Chin, and H. Zhang, "A large clinical study on the ability of stroke patients to use EEG-based motor imagery brain-computer interface," Clinical EEG and Neuroscience, vol. 42, no. 4, pp. 253-258, 2011. https://doi.org/10.1177/155005941104200411
  41. K. Shindo, K. Kawashima, J. Ushiba, N. Ota, M. Ito, T. Ota, A. Kimura, and M. G. Liu, "Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study," Journal of Rehabilitation Medicine, vol. 43, no. 10, pp. 951-957, 2011. https://doi.org/10.2340/16501977-0859
  42. H. Y. Sun, Y. Xiang, and M. D. Yang, "Neurological rehabilitation of stroke patients via motor imaginary-based braincomputer interface technology," Neural Regeneration Research, vol. 6, no. 28, pp. 2198-2202, 2011.
  43. K. K. Ang, C. Guan, K. S. Phua, C. Wang, I. Teh, C. W. Chen, and E. Chew, "Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation," in Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, 2012, pp. 4128-4131.
  44. E. R. Buch, A. M. Shanechi, A. D. Fourkas, C. Weber, N. Birbaumer, and L. G. Cohen, "Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke," Brain, vol. 135, pp. 596-614, 2012. https://doi.org/10.1093/brain/awr331
  45. Y. Kasashima, T. Fujiwara, Y. Matsushika, T. Tsuji, K. Hase, J. Ushiyama, J. Ushiba, and M. G. Liu, "Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke," Experimental Brain Research, vol. 221, no. 3, pp. 263-268, 2012. https://doi.org/10.1007/s00221-012-3166-9
  46. M. Takahashi, K. Takeda, Y. Otaka, R. Osu, T. Hanakawa, M. Gouko, and K. Ito, "Event related desynchronizationmodulated functional electrical stimulation system for stroke rehabilitation: a feasibility study," Journal of Neuroengineering and Rehabilitation, vol. 9, p. 56, 2012. https://doi.org/10.1186/1743-0003-9-56
  47. M. Mihara, N. Hattori, M. Hatakenaka, H. Yagura, T. Kawano, T. Hino, and I. Miyai, "Near-infrared spectroscopymediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study," Stroke, vol. 44, no. 4, pp. 1091-1098, 2013.
  48. B. Varkuti, C. Guan, Y. Pan, K. S. Phua, K. K. Ang, C. W. K. Kuah, K. Chua, B. Ti Ang, N. Birbaumer, and R. Sitaram, "Resting state changes in functional connectivity correlate With movement recovery for BCI and robot-assisted upper-extremity training after stroke," Neurorehabilitation and Neural Repair, vol. 27, no. 1, pp. 53-62, 2013. https://doi.org/10.1177/1545968312445910
  49. A. Caria, C. Weber, D. Brotz, A. Ramos, L. F. Ticini, A. Gharabaghi, C. Braun, and N. Birbaumer, "Chronic stroke recovery after combined BCI training and physiotherapy: a case report," Psychophysiology, vol. 48, no. 4, pp. 578-582, 2011. https://doi.org/10.1111/j.1469-8986.2010.01117.x

Cited by

  1. Improving motor imagery BCI with user response to feedback vol.4, pp.1-2, 2017, https://doi.org/10.1080/2326263X.2017.1303253
  2. Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent vol.11, 2017, https://doi.org/10.3389/fninf.2017.00045
  3. Therapeutic applications of BCI technologies vol.4, pp.1-2, 2017, https://doi.org/10.1080/2326263X.2017.1307625
  4. Assessment of Cognitive Engagement in Stroke Patients From Single-Trial EEG During Motor Rehabilitation 2014, https://doi.org/10.1109/TNSRE.2014.2356472
  5. A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke vol.13, pp.5, 2016, https://doi.org/10.1080/17434440.2016.1174572
  6. Effects of Action Observational Training Plus Brain-Computer Interface-Based Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial vol.23, pp.1, 2016, https://doi.org/10.1002/oti.1403
  7. A Study on Decoding Models for the Reconstruction of Hand Trajectories from the Human Magnetoencephalography vol.2014, 2014, https://doi.org/10.1155/2014/176857
  8. Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy vol.2014, 2014, https://doi.org/10.1155/2014/797128
  9. Effects of training pre-movement sensorimotor rhythms on behavioral performance vol.12, pp.6, 2015, https://doi.org/10.1088/1741-2560/12/6/066021
  10. Predicting BCI Subject Performance Using Probabilistic Spatio-Temporal Filters vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0087056
  11. Low-Rank Linear Dynamical Systems for Motor Imagery EEG vol.2016, 2016, https://doi.org/10.1155/2016/2637603
  12. Active Data Selection for Motor Imagery EEG Classification vol.62, pp.2, 2015, https://doi.org/10.1109/TBME.2014.2358536
  13. Signal Processing Approaches to Minimize or Suppress Calibration Time in Oscillatory Activity-Based Brain–Computer Interfaces vol.103, pp.6, 2015, https://doi.org/10.1109/JPROC.2015.2404941
  14. Use of Electroencephalography Brain-Computer Interface Systems as a Rehabilitative Approach for Upper Limb Function After a Stroke: A Systematic Review vol.9, pp.9, 2017, https://doi.org/10.1016/j.pmrj.2017.04.016
  15. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0143962
  16. EEG Classification of Different Imaginary Movements within the Same Limb vol.10, pp.4, 2015, https://doi.org/10.1371/journal.pone.0121896
  17. Noninvasive Brain-Computer Interface: Decoding Arm Movement Kinematics and Motor Control vol.2, pp.4, 2016, https://doi.org/10.1109/MSMC.2016.2576638
  18. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study vol.14, pp.1, 2017, https://doi.org/10.1186/s12984-017-0307-1
  19. Brain–Computer Interface for Neurorehabilitation of Upper Limb After Stroke vol.103, pp.6, 2015, https://doi.org/10.1109/JPROC.2015.2415800
  20. EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation vol.25, pp.4, 2017, https://doi.org/10.1109/TNSRE.2016.2646763
  21. Detecting and classifying movement-related cortical potentials associated with hand movements in healthy subjects and stroke patients from single-electrode, single-trial EEG vol.12, pp.5, 2015, https://doi.org/10.1088/1741-2560/12/5/056013
  22. Detecting and classifying three different hand movement types through electroencephalography recordings for neurorehabilitation vol.54, pp.10, 2016, https://doi.org/10.1007/s11517-015-1421-5
  23. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke vol.7, 2014, https://doi.org/10.3389/fneng.2014.00030
  24. Investigating the impact of feedback update interval on the efficacy of restorative brain–computer interfaces vol.4, pp.8, 2017, https://doi.org/10.1098/rsos.170660
  25. Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task vol.10, 2016, https://doi.org/10.3389/fnhum.2016.00170
  26. Robust Averaging of Covariances for EEG Recordings Classification in Motor Imagery Brain-Computer Interfaces vol.29, pp.6, 2017, https://doi.org/10.1162/NECO_a_00963
  27. Cortical excitability correlates with the event-related desynchronization during brain–computer interface control vol.15, pp.2, 2018, https://doi.org/10.1088/1741-2552/aa9c8c
  28. Effects of Continuous Kinaesthetic Feedback Based on Tendon Vibration on Motor Imagery BCI Performance vol.26, pp.1, 2018, https://doi.org/10.1109/TNSRE.2017.2739244
  29. Behavioral Outcomes Following Brain–Computer Interface Intervention for Upper Extremity Rehabilitation in Stroke: A Randomized Controlled Trial vol.12, pp.1662-453X, 2018, https://doi.org/10.3389/fnins.2018.00752
  30. Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface vol.18, pp.11, 2018, https://doi.org/10.3390/s18113761
  31. Genetic-based feature selection for efficient motion imaging of a brain–computer interface framework vol.15, pp.5, 2018, https://doi.org/10.1088/1741-2552/aad567
  32. A review: Motor rehabilitation after stroke with control based on human intent vol.232, pp.4, 2018, https://doi.org/10.1177/0954411918755828
  33. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update vol.15, pp.3, 2018, https://doi.org/10.1088/1741-2552/aab2f2
  34. Brain-machine interface of upper limb recovery in stroke patients rehabilitation: A systematic review pp.13582267, 2019, https://doi.org/10.1002/pri.1764
  35. A large scale screening study with a SMR-based BCI: Categorization of BCI users and differences in their SMR activity vol.14, pp.1, 2019, https://doi.org/10.1371/journal.pone.0207351