Adsorption Equilibrium, Kinetics and Thermodynamic Parameters Studies of Bismarck Brown R Dye Adsorption on Granular Activated Carbon

입상 활성탄에 대한 비스마르크 브라운 R 염료의 흡착평형, 동력학 및 열역학 파라미터에 관한 연구

  • Lee, Jong-Jib (Division of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Published : 2013.06.10

Abstract

Batch experiments were carried out for adsorption equilibrium, kinetics and thermodynamic parameters of the brilliant brown R onto granular activated carbon. The operating variables studied were the initial dye concentration, contact time and temperature. Experimental equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption isotherm by linear regression method. The equilibrium process was well described by Freundlich isotherm model and from the determined separation factor (1/n), granular activated carbon could be employed as an effective treatment for the removal of bismarck brown R. From kinetic experiments, the adsorption processes were found to confirm the pseudo second order model with a good correlation and the adsorption rate constant ($k_2$) increased with increasing adsorption temperature. Thermodynamic parameters like the activation energy, change of Gibbs free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption in the temperature range of 298~318 K. The activation energy was determined as 8.73 kJ/mol for 100 mg/L. It was found that the adsorption of bismarck brown R on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G$ = -2.59~-4.92 kJ/mol) and the positive enthalpy change (${\Delta}H$ = +26.34 kJ/mol) are indicative of the spontaneous and endothermic nature of the adsorption process.

Keywords

bismarck brown R;dye adsorption;activated carbon adsorption;adsorption kinetics;adsorption equilibrium

References

  1. A. B. Dos Santos, F. J. Cervantes, and J. B. Van Lier, Bioresour. Technol., 98, 2369 (2006).
  2. B. Shi, G. Li, C. Wang, I. Feng, and H. Tang, J. Hazard. Mater., 143, 567 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.076
  3. D. Mahanta, G. Madras, S. Rdhakrishnan, and S. Patil, J. Phys. Chem., B113, 2293 (2009).
  4. D. Mahanta, G. Madras, S. Rdhakrishnan, and S. Patil, J. Phys. Chem., B112, 10153 (2008).
  5. M. Dogan, M. H. Karaoglu, and M. Alkan, J. Hazard. Mater., 165, 1142 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.101
  6. L. Zhou, C. Gao, and W. Xu, ACS Appl. Mater. Interfaces, 2, 1483 (2010). https://doi.org/10.1021/am100114f
  7. W. Chen, W. Lu, Y. Yao, and M. Xu, Environ. Sci. Technol., 41, 6240 (2007). https://doi.org/10.1021/es070002k
  8. J. J. Lee, Appl. Chem. Eng., 22, 224 (2011).
  9. V. K. Gupta, A. Mittal, L. Krisnan, and V. Grajbe, Sep. Purif. Technol., 40, 87 (2004). https://doi.org/10.1016/j.seppur.2004.01.008
  10. M. U. Dural, L. Canas, S. K. Papageorgiou, and F. K. Katsaros, Chem. Eng. J., 168, 77 (2011). https://doi.org/10.1016/j.cej.2010.12.038
  11. M. Dogan, Y. Ozdemir, and M. Alkan, Dyes Pigments, 75, 701 (2007). https://doi.org/10.1016/j.dyepig.2006.07.023
  12. J. J. Lee and M. H. Um, Appl. Chem. Eng., 23, 450 (2012).
  13. B. H. Fukukawa, Activated carbon water treatment technology and management, ed. Y. K. Kim, 69, Shinkwang Munhwa Publishing Co. Seoul (1996).
  14. Z. Aksu, Biochem. Eng. J., 7, 79 (2001). https://doi.org/10.1016/S1369-703X(00)00098-X
  15. Y. Onal, C. A. Basar, D. Eren, C. S. Onalzdemir, and T. Depci, J. Hazard. Mater., 128, 150 (2006). https://doi.org/10.1016/j.jhazmat.2005.07.055
  16. C. Ijagbemi, M. Baek, and D. Kim, J. Hazard. Mater., 166, 538 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.085
  17. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Chemosphere, 53, 655 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  18. M. J. Jaycock and G. D. Parfitt, Chemistry of Interfaces, Ellis Horwood Ltd., Chichester (1981).
  19. M. Dorgan, M. Alkan, O. Demirbas, Y. Ozdemir, and C. Ozmetin, Chem. Eng. J., 124, 89 (2006). https://doi.org/10.1016/j.cej.2006.08.016
  20. S. Chakraborty, S. Chowdhury, and P. D. Saha, Korean J. Chem. Eng., 29, 1567 (2012). https://doi.org/10.1007/s11814-012-0049-5
  21. M. H. Baek, C. O. Ijagbemi, S. J. O, and D. S. Kim, J. Hazard. Mater., 176, 820 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.110
  22. C. Wang. J. Li, L. Wang, X. Sun, and J. Huang, Chinese J. Chem. Eng., 17, 513 (2009). https://doi.org/10.1016/S1004-9541(08)60239-6
  23. M. T. Sulak, E. Demirbas, and M. Kobya, Biores. Technol., 98, 2590 (2007). https://doi.org/10.1016/j.biortech.2006.09.010
  24. R. Ahmad and R. Kumar, J. Environ. Manag., 91, 1032 (2010). https://doi.org/10.1016/j.jenvman.2009.12.016
  25. Z. Wu, H. Joo, and K. Lee, Chem. Eng. J., 112, 227 (2005). https://doi.org/10.1016/j.cej.2005.07.011
  26. J. J. Lee, Appl. Chem. Eng., 24, 184 (2013).