Changes in the Optical and Thermal Properties of Low-Temperature Cured Polyimide Thin Films Using the Catalyst

촉매를 이용한 저온경화 폴리이미드 박막의 광학적/열적 특성 변화

  • Park, Myeong-Soon (Department of Chemical & Bimolecular Engineering, Yonsei University) ;
  • Kim, Kwang-In (Department of Chemical & Bimolecular Engineering, Yonsei University) ;
  • Nam, Ki-Ho (Department of Chemical & Bimolecular Engineering, Yonsei University) ;
  • Han, Haksoo (Department of Chemical & Bimolecular Engineering, Yonsei University)
  • 박명순 (연세대학교 공과대학 화학공학과) ;
  • 김광인 (연세대학교 공과대학 화학공학과) ;
  • 남기호 (연세대학교 공과대학 화학공학과) ;
  • 한학수 (연세대학교 공과대학 화학공학과)
  • Published : 2013.06.10

Abstract

In this study, various polyimide films were synthesized via low temperature cure in order to understand changes in their physical properties when using 4,4'-oxydianiline (ODA) as a diamine and dianhydride molecules with different backbones on a single diamine such as 4,4'-Oxydiphthalic anhydride (ODPA), 4,4-hexafluoroisopropylidene diphthalic dianhydride (6FDA), and 3,3', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA). After the synthesis of poly(amic acid), polyimide films were fabricated by adding 1,4-diazabicyclo [2.2.2]octane (DABCO), a low-temperature catalyst, at various wt% to poly(amic acid)s. Changes of optical and thermal properties were compared and analyzed between polyimide films without catalyst and polyimide films with catalyst by FT-IR, UV-Vis transmittance, DSC/TGA, and WAXD analysis. Wide-angle X-ray diffraction (WAXD) analysis revealed that the mean intermolecular distance decreased with the use of a catalyst by the type of dianhydride. Thus, while the optical properties of the films improve by a low-temperature cure performed using a catalyst, their thermal properties decrease. These changes can be explained by the changes in the morphological structure of the films triggered by a catalyst-induced reduction in the mean intermolecular distance. Moreover, the results show that the type of dianhydride determines the degree of change in the optical and thermal properties in each types of polyimide, demonstrating that changes in the optical and thermal properties are directly associated with the backbone of the polyimide structure.

Keywords

polyimide;low temperature cure;catalyst;optical and thermal Properties

References

  1. M.-H. Park, S.-J. Yang, W. Jang, and H. Han, Korean Chemical Engineering Research, 43, 305 (2005).
  2. K. L. Mittal, Polyimides: Synthesis, Characterization and Application, Plenum, New York (1984).
  3. D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, Polyimides: Chapman & Hall, New York (1990).
  4. M. I. Bessonove, M. M. Koton, V. V. Kudryyavtsev, and L. A. Kaius, Polyimides: Thermally Stable Polymer; Consultants Bureau, New York (1987).
  5. W. Qu, T.-M. Ko, R. H. Vora, and T.-S. Chung, Polymer, 42, 6393 (2001). https://doi.org/10.1016/S0032-3861(01)00111-2
  6. H. S. Chung, Y. I. Joe, and H. S. Han, J. Appl. Polym. Sci., 74, 3287 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3287::AID-APP1>3.0.CO;2-W
  7. K.-I. Iwashita, T. Hattori, T. Minegishi, S. Ando, F. Toyokawa, and M. Ueda, J. Photopolym. Sci. Technol., 19, 281 (2006). https://doi.org/10.2494/photopolymer.19.281
  8. M. Wohrmann, M. Topper, H. Walter, and K.-D. Lang, Proc 61st Electronic Components and Technology Conference (ECTC), 392 (2011).
  9. J. Yota, H. Ly, R. Ramanathan, H. C. Sun, D. Barone, T. Nguyen, K. Katoh, M. Ohe, R. L. Hubbard, and K. Hicks, IEEE Trans. Semicond. Manuf., 20, 323 (2007). https://doi.org/10.1109/TSM.2007.901410
  10. K. D. Farnsworth, R. N. Manepalli, S. A. Bidstrup-Allen, and P. A. Kohl, IEE Trans. Compon. Packag. Technol., 24, 474 (2001). https://doi.org/10.1109/6144.946496
  11. R. V. Tanikella, S. A. Bidstrup-Allen, and P. A. Kohl, J. Appl. Polym. Sci., 83, 3055 (2002). https://doi.org/10.1002/app.10286
  12. K.-I. Fukukawa, Y. Shibasaki, and M. Ueda, Chem. Lett., 33, 1156 (2004). https://doi.org/10.1246/cl.2004.1156
  13. K.-I. Fukukawa, T. Ogura, Y. Shibasaki, and M. Ueda, Chem. Lett., 34, 1372 (2005). https://doi.org/10.1246/cl.2005.1372
  14. T. S. Lee, S. S. Park, Y. I. Jung, S. W. Han, D. H. Han, I. Kim, and C. S. Ha, Eur. Polym. J., 45, 19 (2009). https://doi.org/10.1016/j.eurpolymj.2008.09.022
  15. J. Pfeifer and O. Rhode, "Recent Advances in Polyimide Science and Technology," The Society of Plastic Engineers, Poughkepsie, New York, 336 (1987).
  16. H. Higuchi, T. Yamashita, K. Horie, and I. Mita, Chem. Mater., 3, 188 (1991). https://doi.org/10.1021/cm00013a038
  17. S. Ando, T. Matsuura, and S. Sasaki, Polym. J., 29, 69 (1997). https://doi.org/10.1295/polymj.29.69
  18. C. Lee, Y. Shul, and H. Han, J. Polym. Sci. Part B: Polym. Phys., 40, 2190 (2002).
  19. J. Seo, A. Lee, J. Oh, and H. Han, Polym. J., 32, 583 (2000). https://doi.org/10.1295/polymj.32.583
  20. A. Lee, J. Seo, J. Jeon, and H. Han, HWAHAK KONGHAK, 38, 249 (2000).