The Preparation of $TiO_2$ Coated Activated Carbon Pellets Driven by LED and Removal Characteristics of VOCs

LED구동 $TiO_2$ 코팅 활성탄소 펠렛 제조 및 VOCs 제거 특성

  • Kim, Yesol (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Kim, Do Young (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Jung, Min-Jung (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Kim, Min Il (GTsien) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
  • 김예솔 (충남대학교 공과대학 정밀응용화학과) ;
  • 김도영 (충남대학교 공과대학 정밀응용화학과) ;
  • 정민정 (충남대학교 공과대학 정밀응용화학과) ;
  • 김민일 (지티사이언) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Published : 2013.06.10

Abstract

In this study, nitrogen doped $TiO_2$ ($N-TiO_2$) coated on an activated carbon pellet (ACP) was prepared using sol-gel and the solid state heat treatment of urea to improve the removal property of volatile organic compounds (VOCs). To explore the visible light photocatalytic activity of the ACP under the light emitting diods (LED), the removal property of benzene gas was characterized by gas chromatography. The SEM and BET results show that the increment of titanium tetra isopropoxide contents leads to the increased $TiO_2$ coating amount of ACP surface and decreased specific surface area. From the results of benzene gas removal, the breakthrough time of ACP10 increased about 2 times compared to that of the ACP. The improved performance was attributed to the $N-TiO_2$ coating on ACP surface, which could be more effective to remove benzene gas under the condition of LED lamp.

Keywords

activated carbon pellet;light emitting diode lamp;VOCs;breakthrough time;benzene

References

  1. A. Rezaee, G. H. Pourtaghi, A. Khavanin, R. S. Mamoory, M. T. Ghaneian, and H. Godini, Iran. J. Environ. Health. Sci. Eng., 5, 305 (2008).
  2. J. Lee and H. Chang, J. Korean Soc. Environ. Eng., 24, 889 (2002).
  3. J. M. Suh and C. H. Jeong, J. Korea Environ. Sci. Soc., 11, 743 (2002).
  4. A. Anfruns, M. J. Martin, and M. A. M. Moran, Chem. Eng. J., 166, 1022 (2011). https://doi.org/10.1016/j.cej.2010.11.095
  5. K. C. Jung and S. C. Hong, Appl. Chem. Eng., 14, 671 (2003).
  6. H. H. An, J. Korean Inst. Gas, 14, 35 (2010).
  7. H. S. Kim and Y. S. Park, J. Korean Soc. Environ. Eng., 25, 977 (2003).
  8. K. J. Kim, C. S. Kang, Y. J. You, M. C. Chung, M. W. Woo, W. J. Jeong, N. C. Park, and H. G. Ahn, Catal. Today, 111, 223 (2006). https://doi.org/10.1016/j.cattod.2005.10.030
  9. L. Li, S. Liu, and J. Liu, J. Hazard. Mater., 192, 683 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.069
  10. S. K. Park and H. C. Kim, Appl. Chem. Eng., 21, 680 (2010).
  11. K. J. Woo, S. D. Kim, and S. H. Lee, Korean Chem. Eng. Res., 45, 277 (2007).
  12. C. H. Ao and S. C. Lee, J. Photoch. Photobio. A, 161, 131 (2004). https://doi.org/10.1016/S1010-6030(03)00276-4
  13. D. S. Selishchev, P. A. Kolinko, and D. V. Kozlov, J. Photoch. Photobio. A, 229, 11 (2012). https://doi.org/10.1016/j.jphotochem.2011.12.006
  14. M. S. Choi, S. Han, S. C. Jang, and Y. W. Jung, J. Korean Soc. Atmos. Environ., 25, 211 (2009). https://doi.org/10.5572/KOSAE.2009.25.3.211
  15. B. C. Bai, J. S. Im, J. G. Kim, and Y. S. Lee, Appl. Chem. Eng., 21, 29 (2010).
  16. Y. G. Kang, K. S. Shin, S. H. Ahn, and H. S. Hahm, J. Korean Oil Chem. Soc., 29, 466 (2012).
  17. M. J. Choi, K. J. Chae, H. W. Yu, K. Y. Kim, A. Jang, and I. S. Kim, J. Korean Soc. Environ. Eng., 32, 907 (2011).
  18. C. Shifu, L. Xuqiang, L. Yunzhang, and C. Gengyu, Appl. Surf. Sci., 253, 3077 (2007). https://doi.org/10.1016/j.apsusc.2006.06.058
  19. J. Kim, Korean Chem. Eng. Res., 42, 224 (2004).
  20. P. K. Khanna, N. Singh, and S. Charan, Mater. Lett., 61, 4725 (2007). https://doi.org/10.1016/j.matlet.2007.03.064
  21. V. Iliev, D. Tomova, and S. Rakovsky, Desalination, 260, 101 (2010). https://doi.org/10.1016/j.desal.2010.04.058
  22. Y. Kim, B. C. Bai, and Y. S. Lee, Appl. Chem. Eng., 23, 308 (2012).
  23. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Appl. Chem. Eng., 22, 405 (2011).
  24. M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo, and Y. S. Lee, J. Colloid Interf. Sci., 381, 152 (2012). https://doi.org/10.1016/j.jcis.2012.05.031
  25. S. K. Ryu, S. Y. Eom, K. S. Yim, and E. D. D., Korean Chem. Eng. Res., 42, 288 (2004).
  26. S. J. Jeong, D. L. Lee, T. Y. Kim, J. H. Kim, S. J. Kim, and S. Y. Cho, Korean Chem. Eng. Res., 40, 694 (2002).
  27. H. Moon and W. K. Lee, Chem. Eng. Sci., 41, 1995 (1986). https://doi.org/10.1016/0009-2509(86)87116-0
  28. M. S. Son, S. D. Kim, K. J. Woo, H. J. Park, M. C. Seo, S. H. Lee, and S. K. Ryu, Korean Chem. Eng. Res., 44, 669 (2006).
  29. H. S. Kim and Y. S. Park, J. Korean Soc. Atmos. Environ., 15, 805 (1999).
  30. S. W. Baek, J. R. Kim, and S. K. Ihm, Catal. Today, 93, 575 (2004).
  31. J. Huang, X. Jin, J. Mao, B. Yuan, R. Deng, and S. Deng, J. Hazard. Mater., 217, 406 (2012).
  32. S. C. Jung and S. H. Lee, J. Korean Soc. Environ. Eng., 34, 397 (2012). https://doi.org/10.4491/KSEE.2012.34.6.397