Applied Chemistry for Engineering (공업화학)
- Volume 24 Issue 3
- /
- Pages.305-313
- /
- 2013
- /
- 1225-0112(pISSN)
- /
- 2288-4505(eISSN)
Effects of Annealing Temperature on Thermal Properties of Glycidyl Azide Polyol-based Energetic Thermoplastic Polyurethane
글리시딜아자이드계 열가소성 폴리우레탄의 열적특성에 대한 열처리 조건의 영향
- Kim, Jeong Su (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
- Kim, Du Ki (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
- Kweon, Jeong Ohk (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
- Lee, Jae Myung (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
- Noh, Si Tae (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
- Kim, Sun Young (Research & Development Department, Hanwha Corporation Yeosu Plant)
- 김정수 (한양대학교 화학공학과) ;
- 김두기 (한양대학교 화학공학과) ;
- 권정옥 (한양대학교 화학공학과) ;
- 이재명 (한양대학교 화학공학과) ;
- 노시태 (한양대학교 화학공학과) ;
- 김선영 (한화여수사업장 개발팀)
- Published : 2013.06.10
-
56 0
Abstract
In this study, we investigated effects of thermal annealing on the thermal properties and microphase separation behaviors of glycidyl azide-based thermoplastic polyurethane elastomers (ETPE). The GAP-based ETPEs were characterized by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and gel permeation chromatography (GPC). The effects of annealing temperature conditions (
Keywords
glycidyl azide polymer;energetic thermoplastic polyurethane;azide group;annealing
References
- J. W. C. Van Bogart, D. A. Bluemke, and S. L. Cooper, Polymer, 22, 1428 (1981). https://doi.org/10.1016/0032-3861(81)90250-0
- P. J. Yoon and C. D. Han, Macromolecules, 33, 2171 (2000). https://doi.org/10.1021/ma991741r
- J. T. Koberstein and T. P. Russell, Macromolecules, 19, 714 (1986). https://doi.org/10.1021/ma00157a039
- L. M. Leung and J. T. Koberstein, Macromolecules, 19, 706 (1986). https://doi.org/10.1021/ma00157a038
- J. T. Koberstein, A. F. Galambos, and L. M. Leung, Macromolecules, 25, 6195 (1992). https://doi.org/10.1021/ma00049a017
- D. J. Martin, G. F. Meijs, P. A. Gunatillake, S. J. Mccarthy, and G. M. Renwick, J. Appl. Polym. Sci., 64, 803 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970425)64:4<803::AID-APP20>3.0.CO;2-T
- D. J. Martin, G. F. Meijs, G. M. Renwick, S. J. Mccarthy, and P. A. Gunatillake, J. Appl. Polym. Sci., 62, 1377 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961128)62:9<1377::AID-APP7>3.0.CO;2-E
- M. Kawamoto, M. F. Diniz, v. L. Lourenco, M. F. Takahashi, T. Keicher, H. Krause, K. Menke, and P. B. Kempa, J. Aerosp. Techonol. Manag., 2, 307 (2010). https://doi.org/10.5028/jatm.2010.02037910
- E. diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Propell. Explos. Pyrot., 28, 210 (2003). https://doi.org/10.1002/prep.200300007
- A. K. Sikder and S. Reddy, Propell. Explos. Pyrot., 38, 14 (2013). https://doi.org/10.1002/prep.201200002
- B. Gaur, V. L. Choudhary, and I. K. Varma, J. Macromol. Sci. Poly. Rev., C43, 505 (2003).
- H. Arisawa and T. B. Brill, Combust. Flame, 112, 533 (1998). https://doi.org/10.1016/S0010-2180(97)00162-4
- H. Fazlioglu and J. Hacaloglu, J. Anal. Appl. Pyrolysis, 63, 327 (2002). https://doi.org/10.1016/S0165-2370(01)00162-0
- M. S. Eroglu and O. Guven, J. Appl. Polym. Sci., 61, 201 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960711)61:2<201::AID-APP1>3.0.CO;2-T
- T. Wang, S. Li, B. Yang, C. Huang, and Y. Li, J. Phys. Chem. Part B, 111, 2449 (2007). https://doi.org/10.1021/jp066375+
- P. kubisa and S. Penczek, Prog. Polym. Sci., 24, 1409 (1999). https://doi.org/10.1016/S0079-6700(99)00028-3
- A. Tsukamoto and O. Vogl, Prog. Polym. Sci., 3, 199 (1971). https://doi.org/10.1016/0079-6700(71)90005-0
- M. B. Frankel, L. R. Grant, and J. E. Flanagan, J. Propul. Power, 8, 560 (1992). https://doi.org/10.2514/3.23514
- H. S. Kim, J. S. You, J. O. Kweon, J. S. Kim, D. S. Kim, S. T. Noh, Y. O. Chang, D. K. Kim, and S. G. Kweon, Appl. Chem. Eng., 21, 377 (2010).
- J. T. Koberstein and T. P. Russell, Macromolecules, 19, 714 (1986). https://doi.org/10.1021/ma00157a039
- L. M. Leung and J. T. Koberstein, Macromolecules, 19, 706 (1986). https://doi.org/10.1021/ma00157a038
- J. T. Koberstein, A. F. Galambos, and L. M. Leung, Macromolecules, 25, 6195 (1992). https://doi.org/10.1021/ma00049a017
- S. Yamasaki, D. Nishiguchi, K. Kojio, and M. Furukawa, Polymer, 48, 4793 (2007). https://doi.org/10.1016/j.polymer.2007.06.006
- J. T. Garrett, R. Xu, J. Cho, and J. Runt, polymer, 44, 2711 (2003). https://doi.org/10.1016/S0032-3861(03)00165-4
- G. Ampleman, A. Marois, and S. Brochu, Recent Res. Developments Macromolecules Res., 3, 355 (1998).
- Y. M. Mohan and K. M. Raju, Intern. J. Polym. Anal. Charact., 9, 289 (2005).
- G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, "Thermoplastic Elastomers", Hanser/Gardner Publications, Inc., Cincinnati (1996).
- S. Pisharath and H. G. Ang, Polymer Degradation and Stability, 92, 1365 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.016
- R. W. Seymour and S. L. Cooper, Macromolecules, 16, 48 (1973).