Effects of Annealing Temperature on Thermal Properties of Glycidyl Azide Polyol-based Energetic Thermoplastic Polyurethane

글리시딜아자이드계 열가소성 폴리우레탄의 열적특성에 대한 열처리 조건의 영향

  • Kim, Jeong Su (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
  • Kim, Du Ki (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
  • Kweon, Jeong Ohk (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
  • Lee, Jae Myung (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
  • Noh, Si Tae (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
  • Kim, Sun Young (Research & Development Department, Hanwha Corporation Yeosu Plant)
  • 김정수 (한양대학교 화학공학과) ;
  • 김두기 (한양대학교 화학공학과) ;
  • 권정옥 (한양대학교 화학공학과) ;
  • 이재명 (한양대학교 화학공학과) ;
  • 노시태 (한양대학교 화학공학과) ;
  • 김선영 (한화여수사업장 개발팀)
  • Published : 2013.06.10

Abstract

In this study, we investigated effects of thermal annealing on the thermal properties and microphase separation behaviors of glycidyl azide-based thermoplastic polyurethane elastomers (ETPE). The GAP-based ETPEs were characterized by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and gel permeation chromatography (GPC). The effects of annealing temperature conditions ($80{\sim}130^{\circ}C$, 1 h or 24 h) on the properties of the ETPEs were investigated. The intensity of azide group absorption peak of ATR-FTIR spectra and the solubility of ETPE for methylene chloride and dimethylformamide solvent decreased after the annealing at $130^{\circ}C$ for 1 h and at $105^{\circ}C$ for 24 h. With increasing the annealing temperature from $80^{\circ}C$ to $110^{\circ}C$, the high temperature rubbery plateau region of storage modulus curves from DMA thermogram for GAP-based ETPEs was extended to the higher temperature.

Keywords

glycidyl azide polymer;energetic thermoplastic polyurethane;azide group;annealing

References

  1. J. W. C. Van Bogart, D. A. Bluemke, and S. L. Cooper, Polymer, 22, 1428 (1981). https://doi.org/10.1016/0032-3861(81)90250-0
  2. P. J. Yoon and C. D. Han, Macromolecules, 33, 2171 (2000). https://doi.org/10.1021/ma991741r
  3. J. T. Koberstein and T. P. Russell, Macromolecules, 19, 714 (1986). https://doi.org/10.1021/ma00157a039
  4. L. M. Leung and J. T. Koberstein, Macromolecules, 19, 706 (1986). https://doi.org/10.1021/ma00157a038
  5. J. T. Koberstein, A. F. Galambos, and L. M. Leung, Macromolecules, 25, 6195 (1992). https://doi.org/10.1021/ma00049a017
  6. D. J. Martin, G. F. Meijs, P. A. Gunatillake, S. J. Mccarthy, and G. M. Renwick, J. Appl. Polym. Sci., 64, 803 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970425)64:4<803::AID-APP20>3.0.CO;2-T
  7. D. J. Martin, G. F. Meijs, G. M. Renwick, S. J. Mccarthy, and P. A. Gunatillake, J. Appl. Polym. Sci., 62, 1377 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961128)62:9<1377::AID-APP7>3.0.CO;2-E
  8. M. Kawamoto, M. F. Diniz, v. L. Lourenco, M. F. Takahashi, T. Keicher, H. Krause, K. Menke, and P. B. Kempa, J. Aerosp. Techonol. Manag., 2, 307 (2010). https://doi.org/10.5028/jatm.2010.02037910
  9. E. diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Propell. Explos. Pyrot., 28, 210 (2003). https://doi.org/10.1002/prep.200300007
  10. A. K. Sikder and S. Reddy, Propell. Explos. Pyrot., 38, 14 (2013). https://doi.org/10.1002/prep.201200002
  11. B. Gaur, V. L. Choudhary, and I. K. Varma, J. Macromol. Sci. Poly. Rev., C43, 505 (2003).
  12. H. Arisawa and T. B. Brill, Combust. Flame, 112, 533 (1998). https://doi.org/10.1016/S0010-2180(97)00162-4
  13. H. Fazlioglu and J. Hacaloglu, J. Anal. Appl. Pyrolysis, 63, 327 (2002). https://doi.org/10.1016/S0165-2370(01)00162-0
  14. M. S. Eroglu and O. Guven, J. Appl. Polym. Sci., 61, 201 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960711)61:2<201::AID-APP1>3.0.CO;2-T
  15. T. Wang, S. Li, B. Yang, C. Huang, and Y. Li, J. Phys. Chem. Part B, 111, 2449 (2007). https://doi.org/10.1021/jp066375+
  16. P. kubisa and S. Penczek, Prog. Polym. Sci., 24, 1409 (1999). https://doi.org/10.1016/S0079-6700(99)00028-3
  17. A. Tsukamoto and O. Vogl, Prog. Polym. Sci., 3, 199 (1971). https://doi.org/10.1016/0079-6700(71)90005-0
  18. M. B. Frankel, L. R. Grant, and J. E. Flanagan, J. Propul. Power, 8, 560 (1992). https://doi.org/10.2514/3.23514
  19. H. S. Kim, J. S. You, J. O. Kweon, J. S. Kim, D. S. Kim, S. T. Noh, Y. O. Chang, D. K. Kim, and S. G. Kweon, Appl. Chem. Eng., 21, 377 (2010).
  20. J. T. Koberstein and T. P. Russell, Macromolecules, 19, 714 (1986). https://doi.org/10.1021/ma00157a039
  21. L. M. Leung and J. T. Koberstein, Macromolecules, 19, 706 (1986). https://doi.org/10.1021/ma00157a038
  22. J. T. Koberstein, A. F. Galambos, and L. M. Leung, Macromolecules, 25, 6195 (1992). https://doi.org/10.1021/ma00049a017
  23. S. Yamasaki, D. Nishiguchi, K. Kojio, and M. Furukawa, Polymer, 48, 4793 (2007). https://doi.org/10.1016/j.polymer.2007.06.006
  24. J. T. Garrett, R. Xu, J. Cho, and J. Runt, polymer, 44, 2711 (2003). https://doi.org/10.1016/S0032-3861(03)00165-4
  25. G. Ampleman, A. Marois, and S. Brochu, Recent Res. Developments Macromolecules Res., 3, 355 (1998).
  26. Y. M. Mohan and K. M. Raju, Intern. J. Polym. Anal. Charact., 9, 289 (2005).
  27. G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, "Thermoplastic Elastomers", Hanser/Gardner Publications, Inc., Cincinnati (1996).
  28. S. Pisharath and H. G. Ang, Polymer Degradation and Stability, 92, 1365 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.016
  29. R. W. Seymour and S. L. Cooper, Macromolecules, 16, 48 (1973).