Optimization of Synthesis Condition of Monolithic Sorbent Using Response Surface Methodology

반응 표면 분석법을 이용한 일체형 흡착제의 합성 조건 최적화

  • Park, Ha Eun (Department of Chemical Engineering, Inha University) ;
  • Row, Kyung Ho (Department of Chemical Engineering, Inha University)
  • 박하은 (인하대학교 화학공학과) ;
  • 노경호 (인하대학교 화학공학과)
  • Published : 2013.06.10

Abstract

A 17-run Box-Behnken design was used to optimize the synthesis conditions of a monolithic sorbent. The effects of the amount of monomer (mL), crosslink (mL) and porogen (mL) were investigated. The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The adjusted coefficient of determination ($R^2$) of the model was 0.9915. The probability value (p < 0.0001) demonstrated a high significance for the regression model. A mean amount of polymer as 2120.15 mg was produced under the following optimum synthesis conditions: the optimized volumes of monomer, crosslink and porogen are 0.30, 1.40, and 1.47 mL, respectively. This was in good agreement with the predicted model value.

Keywords

Box-Behnken design;monolithic sorbent;synthesis;response surface methodology

References

  1. H. Hashem and T. Jira, Chromatographia, 61, 133 (2005). https://doi.org/10.1365/s10337-004-0479-2
  2. A. Korner and S. Kohn, J. Chromatogr. A, 1089, 148 (2005). https://doi.org/10.1016/j.chroma.2005.06.084
  3. I. Mihelic, D. Nemec, A. Podgornik, and T. Koloini, J. Chromatogr. A, 1065, 59 (2005). https://doi.org/10.1016/j.chroma.2004.10.054
  4. T. Zhu and K. H. Row, J. Liq. Chromatogr. Related Technol., 32, 1423 (2009). https://doi.org/10.1080/10826070902900954
  5. T. Zhu and K. H. Row, Chromatographia, 71, 981 (2010). https://doi.org/10.1365/s10337-010-1574-1
  6. N. Fontanals, R. M. Marce, and F. Borrull, J. Chromatogr. A, 1152, 14 (2007). https://doi.org/10.1016/j.chroma.2006.11.077
  7. M. Guerrouache, B. Carbonnier, C. Vidal-Madjar, and M. C. Millot, J. Chromatogr. A, 1149, 368 (2007). https://doi.org/10.1016/j.chroma.2007.03.039
  8. Q. Luo, H. Zou, X. Xiao, Z. Guo, L. Kong, and X. Mao, J. Chromatogr. A, 926, 255 (2001). https://doi.org/10.1016/S0021-9673(01)01055-X
  9. N. Tanaka, H. Kobayashi, and N. Ishizuka, J. Chromatogr. A, 965, 35 (2002). https://doi.org/10.1016/S0021-9673(01)01582-5
  10. E. G. Vlakh and T. B. Tennikova, J. Sep. Sci., 30, 2801 (2007). https://doi.org/10.1002/jssc.200700284
  11. G. E. P. Box and K. B. Wilson, J. R. Statist. Soc. A, 13, 1 (1951).
  12. Y. Sun, T. Li, J. Yan, and J. Liu, Carbohydr. Polym., 80, 242 (2010). https://doi.org/10.1016/j.carbpol.2009.11.018
  13. J. Guo, Y. Luo, D. Fan, P. Gao, X. Ma, and C. Zhu, Chin. J. Chem. Eng., 18, 830 (2010). https://doi.org/10.1016/S1004-9541(09)60135-X
  14. Y. Wu, S. W. Cui, J. Tang, and X. Gu, Food Chem., 105, 1599 (2007). https://doi.org/10.1016/j.foodchem.2007.03.066
  15. G. Yin and Y. Dang, Carbohydr. Polym., 74, 603 (2008). https://doi.org/10.1016/j.carbpol.2008.04.025
  16. C. Zhang, D. Fan, L. Shang, X. Ma, Y. Luo, W. Xue, and P. Gao, Chin. J. Chem. Eng., 18, 137 (2010). https://doi.org/10.1016/S1004-9541(08)60334-1
  17. T. Zhu, H. J. Heo, and K. H. Row, Carbohydr. Polym., 82, 106 (2010). https://doi.org/10.1016/j.carbpol.2010.04.029
  18. G. E. P. Box and K. B. Wilson, J. R. Statist. Soc. A, 13, 1 (1951).
  19. S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, and G. C. Brand, Anal. Chim. Acta., 597, 179 (2007). https://doi.org/10.1016/j.aca.2007.07.011
  20. H. Zhao, J. Wang, and Z. Lu, Carbohydr. Polym., 77, 677 (2009). https://doi.org/10.1016/j.carbpol.2009.02.013
  21. H. Xu, L. P. Sun, Y. Z. Shi, Y. H. Wu, B. Zhang, and D. Q. Zhao, Biochem. Eng. J., 39, 66 (2008). https://doi.org/10.1016/j.bej.2007.08.013
  22. R. Li, W. Chen, W. Wang, W. Tian, and X. Zhang, Carbohydr. Polym., 78, 784 (2009). https://doi.org/10.1016/j.carbpol.2009.06.018
  23. W. Y. Song and S. W. Chang, J. Kor. Soc. Wat. Qual., 25, 96 (2009).