Synthesis of Conjugated Linoleic Acid Methylester using Heterogeneous Catalysts

불균일계 촉매에 의한 공액 리놀레산 메틸에스테르의 합성

  • Yuk, Jeong-Suk (Industrial Bio-based Materials Research Group, Integrated Chemistry Research Division, KRICT) ;
  • Lee, Sang-Jun (Industrial Bio-based Materials Research Group, Integrated Chemistry Research Division, KRICT) ;
  • Kim, Nam-Kyun (Industrial Bio-based Materials Research Group, Integrated Chemistry Research Division, KRICT) ;
  • Kim, Young-Wun (Industrial Bio-based Materials Research Group, Integrated Chemistry Research Division, KRICT) ;
  • Yoon, Byeong-Tae (Industrial Bio-based Materials Research Group, Integrated Chemistry Research Division, KRICT)
  • 육정숙 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 이상준 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 김남균 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 김영운 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 윤병태 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터)
  • Published : 2013.06.10

Abstract

Conjugated linoleic acid methylester was synthesized through isomerization of linoleic acid methylester by using heterogeneous catalysts. As for heterogeneous catalysts, Ni supported zeolite type catalysts were used. H zoelite Y (HY) were ion exchanged with KCl aqueous solution to synthesize K zeolite Y (KY), and with impregnation method, Ni supported zeolite catalysts were synthesized. Catalysts were used after pre-treatment by using hydrogen. HY catalysts showed a high conversion at low temperatures; but a low selectivity for conjugation reaction. KY catalysts showed a low conversion at low temperatures; but a similar conversion with HY catalysts at high temperatures while a high selectivity at low temperatures. As a result, 4 wt% Ni/KY720 recorded the high conjugation yield of 63.4% at 220.

Keywords

conjugated linoleic acid methylester;isomerization;nickel supported zeolite catalyst;K zeolite;H zoelite Y

References

  1. A. M. G. Pedrosa, M. J. B. Souza, D. M. A. Melo, and A. S. Araujo, Mater. Res. Bull., 41, 1105 (2006). https://doi.org/10.1016/j.materresbull.2005.11.010
  2. P. Tolvanen, P. Maki-Arvela, N. Kumar, K. Eranen, R. Sjoholm, J. Hemming, B. Holmbom, T. Salmi, and D. Y. Murzin, Appl. Catal. A; Gen, 330, 1 (2007). https://doi.org/10.1016/j.apcata.2007.06.012
  3. R. M. Koster, M. Bogert, B. de Leeuw, E. K. Poels, and A. Bliek, J. Mol. Catal. A; Chem., 134, 159 (1998). https://doi.org/10.1016/S1381-1169(98)00032-6
  4. P. R. O'Quinn, J. L. Nelssen, R. D. Goodband, and M. D. Tokach, Anim. Health Res. Rev., 1, 35 (2000). https://doi.org/10.1017/S1466252300000049
  5. A. Philippaerts, S. Goossens, P. A. Jacobs, and B. F. Sels, Chem. Sus. Chem., 4, 684 (2011). https://doi.org/10.1002/cssc.201100086
  6. A. Philippaerts, S. Paulussen, S. Turner, O. I. Lebedev, G. Van Tendeloo, H. Poelman, M. Bulut, F. De Clippel, P. Smeets, B. Sels, and P. Jacobs, J. Catal., 270, 172 (2010). https://doi.org/10.1016/j.jcat.2009.12.022
  7. N. Chorfa, S. Hamoudi, and K. Belkacemi, Appl. Catal. A; Gen., 387, 75 (2010). https://doi.org/10.1016/j.apcata.2010.08.006
  8. A. Bernas, N. Kumar, P. Maki-Arvela, B. Holmbom, T. Salmi, and D. Y. Murzin, Org. Process Res. Dev., 8, 341 (2004). https://doi.org/10.1021/op034127v
  9. T. Yang and T. Liu, J. Agric. Food Chem., 52, 5079 (2004). https://doi.org/10.1021/jf0401017
  10. A. Philippaerts, S. Goossens, W. Vermandel, M. Tromp, S. Turner, J. Geboers, G. Van Tendeloo, P. A. Jacobs, and B. F. Sels, Chem. Sus. Chem., 4, 757 (2011). https://doi.org/10.1002/cssc.201100015
  11. A. Bernas and D. Y. Murzin, Chem. Eng. J., 115, 13 (2005). https://doi.org/10.1016/j.cej.2005.09.001
  12. M. Kreich and P. Claus, Angew. Chem. Int. Ed., 44, 7800 (2005). https://doi.org/10.1002/anie.200501852
  13. P. Pakdeechanuan, K. Intarapichet, L. N. Fernando, and I. U. Grun, J. Agric. Food Chem., 53, 923 (2005). https://doi.org/10.1021/jf048957z
  14. A. Bernas, P. Maki-Arvela, N. Kumar, B. Holmbom, T. Salmi, and D. Y. Murzin, Ind. Eng. Chem. Res., 42, 718 (2003). https://doi.org/10.1021/ie020642q
  15. P. Pertici, V. Ballantini, S. Catalano, A. Giuntoli, C. Malanga, and G. Vitulli, J. Mol. Catal. A: Chem., 144, 7 (1999). https://doi.org/10.1016/S1381-1169(98)00345-8
  16. S. Narasimhan, D. Mukesh, R. Gadkarl, and V. M. Deshpande, Ind. Eng. Chem. Prod. Res. Dev., 24, 324 (1985). https://doi.org/10.1021/i300018a029
  17. C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice, 2nd ed, McGraw-Hill (1993).
  18. D. Mukesh, C. S. Narasimhan, V. M. Deshpande, and K. Ramnarayan, Ind. Eng. Chem. Res., 27, 409 (1988). https://doi.org/10.1021/ie00075a008
  19. A. Bernas, N. Kumar, P. Maki-Arvela, N. V. Kul'kova, B. Holmbom, T. Salmi, and D. Y. Murzin, Appl. Catal. A: Gen., 245, 257 (2003). https://doi.org/10.1016/S0926-860X(02)00646-4
  20. A. Bernas, P. Laukkanen, N. Kumar, P. Mki-Arvela, J. Vyrynen, E. Laine, B. Holmbom, T. Salmi, and D. Y. Murzin, J. Catal., 210, 354 (2002). https://doi.org/10.1006/jcat.2002.3690
  21. Q. Gu, F. David, F. Lynen, P. Vanormelingen, W. Vyverman, K. Rumpel, G. Xu, and P. Sandra, J. Chromatogr. A., 1218, 3056 (2011). https://doi.org/10.1016/j.chroma.2011.03.011
  22. H. Robson, Verified Syntheses of Zeolitic Materials, 118 Elsevier, New York (2001).