Net Energy Analysis of the Microalgae Biorefinery

미세조류 바이오정유 공정의 에너지 수지 분석

  • Lee, See Hoon (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Kook, Jin Woo (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Na, Jeong Gal (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Oh, You-Kwan (Clean Fuel Department, Korea Institute of Energy Research)
  • 이시훈 (전북대학교 자원에너지공학과) ;
  • 국진우 (전북대학교 자원에너지공학과) ;
  • 나정걸 (한국에너지기술연구원 청정연료연구단) ;
  • 오유관 (한국에너지기술연구원 청정연료연구단)
  • Published : 2013.06.10

Abstract

Recently a novel bio refinery process with using nonedible biomass, especially microalgae, has been developed in order to directly reduce $CO_2$ concentration from flue gas and simultaneously produce renewable bio fuel. Micro algae-to-biofuel processes are composed of microalgae cultivation, harvesting, lipid extraction, and bio fuel conversion. So, there are concerns about the energy efficiencies of bio refinery processes. In this study, the net energy ratio of microalgae processes were calculated for the microalgae produced from a pilot photobioreacto using $CO_2$ released from coal combustion. In this study, trans-esterification and pyrolysis processes were used to analyze the net energy efficiencies. Micro algae-to-biofuel processes might produce bio fuels with the higher energy than that of the total consumed energy for cultivation, harvesting, extraction and conversion. If the lipid content of microalgae was higher, the trans-esterification conversion process was more effective than that of pyrolysis process.

Keywords

microalgae;biorefinery;biofuel;net energy ratio

References

  1. W. H. Eom, J. H. Kim, and S. H. Lee, Appl. Chem. Eng., 23, 23 (2012).
  2. A. M. Doyle, and J. A. Bell, Algal Biofuels, Nova Science Publishers, Inc., Newyork, USA (2011).
  3. E. Suali and R. Sarbatly, Renew. Sust. Energy Rev., 16, 4316 (2012). https://doi.org/10.1016/j.rser.2012.03.047
  4. M. K. Lam, K. T. Lee, and A. R. Mohamed, Int. J. Green. Gas Cont., 10, 456 (2012). https://doi.org/10.1016/j.ijggc.2012.07.010
  5. L. F. Razon and R. R. Tan, Appl. Energ., 88, 3507 (2011). https://doi.org/10.1016/j.apenergy.2010.12.052
  6. H. H. Khoo, P. N. Sharratt, P. Das, R. K. Balasubramanian, P. K. Naraharisetti, and S. Shaik, Bioresource Technol., 103, 5800 (2011).
  7. K. Wang, R. C. Brown, S. Homsy, L. Martinez, and S. S. Sidhu, in press, http://dx.doi.org/10.1016/j.biortech.2012.08.016.
  8. O. Jorquera, A. Kiperstok, E. A. Sales, M. Embirucu, and M. L. Ghirardi, Bioresource Technol., 101, 1406 (2010). https://doi.org/10.1016/j.biortech.2009.09.038
  9. L. Xu, D. W. F. Brilman, J. A. M. Withag, G. Brem, and S. Kersten, Bioresource Technol., 102, 5113 (2011). https://doi.org/10.1016/j.biortech.2011.01.066
  10. H. S. Lee, S. G. Jeon, Y. K. Oh, K. H. Kim, S. H. Chung, J. G. Na, and S. D. Yeo, Korean Chem. Eng. Res., 50, 672 (2012). https://doi.org/10.9713/kcer.2012.50.4.672
  11. S. H. Lee, M. S. Eom, K. S. Yoo, N. C. Kim, J. K. Jeon, Y. K. Park, B. H. Song, and S. H. Lee, J. Anal. Appl. Pyrolysis, 83, 110 (2008). https://doi.org/10.1016/j.jaap.2008.06.006
  12. S. H. Lee, Y. L. Son, C. B. Ko, K. B. Choi, and J. H. Kim, J. Korean Ind. Eng. Chem., 20, 391 (2009).