Fabrication and Electrochemical Characterization of Ion-selective Composite Carbon Electrode Coated with Sulfonated Poly(Ether Ether Ketone)

Sulfonated Poly(Ether Ether Ketone)을 코팅한 이온선택성 복합탄소전극의 제조 및 전기화학적 특성 분석

  • Choi, Jae-Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Park, Chan-Mi (Department of Chemical Engineering, Kongju National University)
  • 최재환 (공주대학교 화학공학부) ;
  • 박찬미 (공주대학교 화학공학부)
  • Published : 2013.06.10

Abstract

Sulfonated poly(ether ether ketone) (SPEEK) with a certain degree of sulfonation were synthesized by reacting PEEK and sulfuric acid at different reaction time. Then ion-selective composite carbon electrodes (ISCCE) were fabricated by coating the prepared SPEEK on the surface of carbon electrodes. The specific capacitance and resistance of the ISCCE were analyzed by electrical impedance spectroscopy. The ion exchange capacities (IEC) of the SPEEKs were measured in the range of 1.60~2.57 meq/g depending on the sulfonation time. The SPEEK more than 2.5 meq/g of IEC was considered unsuitable for fabricating the ISCCE because it was dissolved in water. The specific capacitance of the prepared ISCCE increased with increasing the IEC of coated SPEEKs and the capacitance was improved up to about 20% compared to that of uncoated carbon electrode. In addition, the electrical resistance of coating layer decreased significantly with increasing the IEC of coated SPEEKs. It is expected that the desalination efficiency of conventional capacitive deionization process can be improved by using the prepared ISCCE coated with SPEEK.

Keywords

capacitive deionization;sulfonated poly(ether ether ketone);ion exchange capacity;composite carbon electrode;specific capacitance

References

  1. B. H. Park, Y. J. Kim, J. S. Park, and J. H. Choi, J. Ind. Eng. Chem., 17, 717 (2011). https://doi.org/10.1016/j.jiec.2011.05.015
  2. B. C. Johnson, I. Yilgor, C. Tran, M. Iqbal, J. P. Wightman, D. R. Lloyd, and J. E. Mcgarth, J. Polym. Sci., 22, 721 (1984).
  3. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Application, 2nd Ed., John Wiley & Sons, Inc., 2001.
  4. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
  5. B. H. Park and J. H. Choi, Electrochim. Acta, 55, 2888 (2010). https://doi.org/10.1016/j.electacta.2009.12.084
  6. Y. J. Kim and J. H. Choi, Appl. Chem. Eng., 21, 87 (2010).
  7. C. J. Gabelich and T. D. Tran, I. H. "MEL" Suffet, Environ. Sci. Technol., 36, 3010 (2002). https://doi.org/10.1021/es0112745
  8. Y. Oren, Desalination, 228, 10 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  9. M. A. Anderson, A. L. Cudero, J. Palma, Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  10. M. W. Ryoo and G. Seo, Water. Res., 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  11. P. M. Biesheuvel, J. Colloid Interface Sci., 332, 258 (2009). https://doi.org/10.1016/j.jcis.2008.12.018
  12. H. Li, L. Zou, L. Pan, and Z. Sun, Environ. Sci. Technol., 44, 8692 (2010). https://doi.org/10.1021/es101888j
  13. Y. J. Kim and J. H. Choi, Sep. Purif. Technol., 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  14. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, Water Res., 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026
  15. J. H. Lee, W. S. Bae, and J. H. Choi, Desalination, 258, 159 (2010). https://doi.org/10.1016/j.desal.2010.03.020
  16. P. M. Biesheuvel and A. van der Wal, J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  17. M. D. Andelman, CA Patent 2444390 (2002).
  18. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  19. Y. J. Kim and J. H. Choi, Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  20. R. T. S. Muthu Lakshmi, V. Choudhary, and I. K. Varma, J. Mater. Sci., 40, 629 (2005). https://doi.org/10.1007/s10853-005-6300-2
  21. K. D. Kreuer, J. Membr. Sci., 185, 29 (2001). https://doi.org/10.1016/S0376-7388(00)00632-3
  22. N. Shibuya and R. S. Porter, Macromolecules, 25, 6495 (1992). https://doi.org/10.1021/ma00050a017
  23. R. Y. M. Huang, P. Shao, C. M. Burns, and X. Feng, J. Appl. Polym. Sci., 82, 2651 (2001). https://doi.org/10.1002/app.2118
  24. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam (2004).
  25. H. Probstle, M. Wiener, and J. Fricke, J. Porous Mater., 10, 213 (2003). https://doi.org/10.1023/B:JOPO.0000011381.74052.77